Low Area and High Bit Resolution Flash Analog to Digital Converter for Wide Band Applications: A Review

2021 ◽  
Vol 13 ◽  
Author(s):  
Banoth Krishna ◽  
Sandeep Singh Gill ◽  
Amod Kumar

: This work reviews the design challenges of CMOS flash type analog-to-digital converter (ADC) for making high bit resolution, low area, low noise, low offset, and power-efficient architecture. Low-bit resolution flash ADC architecture, high-speed applications, and wide-area parallel comparators are identified on their suitability of the design for ADCs. These are effective in the area and bit resolution. The overview includes bit resolution, area, power dissipation, bandwidth and offset noise consideration for high-speed flash ADC design. A MUX-based two-step half flash architecture is considered for applications requiring 1 GHz 16-bit resolution low area and low power consumption. An advanced comparator, MUX, a high-speed digital-to-analog converter(DAC), and MUX-based encoder are also reviewed. The design of technology-efficient ADC architecture is highly challenging for the analog designer.

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 165
Author(s):  
Shouping Li ◽  
Yang Guo ◽  
Jianjun Chen ◽  
Bin Liang

This paper presents a foreground digital calibration algorithm based on a dynamic comparator that aims to reduce comparator offset and capacitor mismatch, as well as improve the performance of the successive approximation analog-to-digital converter (SARADC). The dynamic comparator is designed with two preamplifiers and one latch to facilitate high speed, high precision, and low noise. The foreground digital calibration algorithm provides high speed with minimal area consumption. This design is implemented on a 12-bit 30 MS/s SARADC with a standard 0.13 μm Complementary Metal Oxide Semiconductor (CMOS) process. The simulation Nyquist 68.56 dB signal-to-noise-and-distortion ratio (SNDR) and 84.45 dBc spurious free dynamic range (SFDR) at 30 MS/s, differential nonlinearity (DNL) and integral nonlinearity (INL) are within 0.64 Least Significant Bits (LSB) and 1.3 LSB, respectively. The ADC achieves an effective number of bits (ENOB) of 11.08 and a figure-of-merit (FoM) of 39.45 fJ/conv.-step.


Author(s):  
CHANNAKKA LAKKANNAVAR ◽  
SHRIKANTH K. SHIRAKOL ◽  
KALMESHWAR N. HOSUR

Analog-to-Digital Converters (ADCs) are useful building blocks in many applications such as a data storage read channel and an optical receiver because they represent the interface between the real world analog signal and the digital signal processors. Many implementations have been reported in the literature in order to obtain high-speed analog-todigital converters (ADCs). In this paper an effort is made to design 4-bit Flash Analog to Digital Converter [ADC] using 180nm cmos technology. For high-speed applications, a flash ADC is often used. Resolution, speed, and power consumption are the three key parameters for an Analog-to-Digital Converter (ADC). The integrated flash ADC is operated at 4-bit precision with analog input voltage of 0 to 1.8V. The ADC has been designed, implemented & analysed in standard gpdk180nm technology library using Cadence tool.


Sign in / Sign up

Export Citation Format

Share Document