Antifungal activity of green and red Brazilian propolis extracts

2021 ◽  
Vol 11 ◽  
Author(s):  
Márcia Christina Dornelas de Freitas ◽  
Nívea Pereira de Sá ◽  
Blenda Fernandes ◽  
Anny Caroline Messias ◽  
Gabriela Fonseca Lopes ◽  
...  

Background: Diseases associated to Candida spp. are recurrent and can be difficult to treat, mainly due to the new strains resistant to the limited number of available antifungals. Objective: Evaluate the in vitro and in vivo activity of Brazilian green propolis (GrProp) and red propolis (RdProp) ethanolic extracts against standard strains of Candida albicans, C. tropicalis, C. krusei, C. glabrata, C. parapsilosis and 10 clinical isolates of C. albicans. Methods: Antifungal activity in vitro was tested using the M-27-A3/CLSI protocol. The in vivo antifungal activity was evaluated using Tenebrio molitor model. And, the effect of extracts on adhesion of C. albicans in human buccal epithelial cells (BECs) was also studied. Results: GrProp and RdProp exhibited antifungal activity against at least one of the Candida strains tested. The adhesion inhibition of C. albicans in BECs was of 45% (GrProp28), 60% (GrProp50) and of 82% (RdProp), in comparison to amphotericin B (82%). All propolis extracts showed synergistic activity with fluconazole and amphotericin B. GrProp50 (10 mg/kg) showed the better protection of T. molitor, blocking the progression of C. albicans infection, increasing survival and delayed the larvae death. Conclusion: Brazilian GrProp and RdProp extracts inhibit the in vitro C. albicans growth and protect T. molitor against infection by this yeast. The physiochemical parameters found for the analyzed samples were in accordance to the standards established by the Brazilian Legislation for propolis and derivatives. GrProp and RdProp have potential to be used against Candida spp. infections, mainly in association with fluconazole or amphotericin B.

2020 ◽  
Vol 16 (2) ◽  
pp. 55-58
Author(s):  
Falah Hasan Obayes AL-Khikani

Vaginitis is a common problem for women regarding a worldwide health challenge with many side effects. Vaginitis is among the most visiting to gynecology clinics. About 75% of all reproductive women had at least one fungal vaginitis infection in their life, and more than 40% will have two or more than two.  Candida spp is the most prevalent in fungal vaginitis, while reports for unusual fungi were observed as mucor spp. Amphotericin B (AmB) belongs to the polyene group has a wide spectrum in vitro and in vivo antifungal activity. All of the known available formulas of AmB are administrated via intravenous injection to treat severe systemic fungal infections, while the development of the topical formula of AmB is still under preliminary development including topical vaginal AmB. Due to the revealing of antimicrobial-resistant fungi in recent years, this study explains the role of topical AmB in treating refractory fungi vaginitis that may not a response to other drugs reported in many cases that may help researchers to develop new effective formula of AmB regarding fungal vaginitis.


Author(s):  
Janet Herrada ◽  
Ahmed Gamal ◽  
Lisa Long ◽  
Sonia P. Sanchez ◽  
Thomas S. McCormick ◽  
...  

Antifungal activity of AmBisome against Candida auris was determined in vitro and in vivo. AmBisome showed MIC50 and MIC90 values of 1 and 2 μg/mL, respectively. Unlike conventional amphotericin B, significant in vivo efficacy was observed in the AmBisome 7.5 mg/kg -treated group in survival and reduction of kidney tissue fungal burden compared to the untreated group. Our data shows that AmBisome shows significant antifungal activity against C. auris in vitro as well as in vivo.


2005 ◽  
Vol 49 (4) ◽  
pp. 1597-1599 ◽  
Author(s):  
Benjamin Mimee ◽  
Caroline Labbé ◽  
René Pelletier ◽  
Richard R. Bélanger

ABSTRACT Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines.


2014 ◽  
Vol 4 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Vivek Kumar ◽  
Pramod K. Gupta ◽  
Vivek K. Pawar ◽  
Ashwni Verma ◽  
Renuka Khatik ◽  
...  

2013 ◽  
Vol 57 (8) ◽  
pp. 3815-3822 ◽  
Author(s):  
Anna N. Tevyashova ◽  
Evgenia N. Olsufyeva ◽  
Svetlana E. Solovieva ◽  
Svetlana S. Printsevskaya ◽  
Marina I. Reznikova ◽  
...  

ABSTRACTA comprehensive comparative analysis of the structure-antifungal activity relationships for the series of biosynthetically engineered nystatin analogues and their novel semisynthetic derivatives, as well as amphotericin B (AMB) and its semisynthetic derivatives, was performed. The data obtained revealed the significant influence of the structure of the C-7 to C-10 polyol region on the antifungal activity of these polyene antibiotics. Comparison of positions of hydroxyl groups in the antibiotics andin vitroantifungal activity data showed that the most active are the compounds in which hydroxyl groups are in positions C-8 and C-9 or positions C-7 and C-10. Antibiotics with OH groups at both C-7 and C-9 had the lowest activity. The replacement of the C-16 carboxyl with methyl group did not significantly affect thein vitroantifungal activity of antibiotics without modifications at the amino group of mycosamine. In contrast, the activity of the N-modified derivatives was modulated both by the presence of CH3or COOH group in the position C-16 and by the structure of the modifying substituent. The most active compounds were testedin vivoto determine the maximum tolerated doses and antifungal activity on the model of candidosis sepsis in leukopenic mice (cyclophosphamide-induced). Study of our library of semisynthetic polyene antibiotics led to the discovery of compounds, namely,N-(l-lysyl)-BSG005 (compound 3n) and, especially,l-glutamate of 2-(N,N-dimethylamino)ethyl amide of S44HP (compound 2j), with high antifungal activity that were comparable inin vitroandin vivotests to AMB and that have better toxicological properties.


2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S82-S82
Author(s):  
Hamid Badalii

Abstract Background Blood stream infections due to Candida auris are related to a high mortality rate and treatment failure attributed to resistance to fluconazole, voriconazole, amphotericin B, and caspofungin. Thus, the precise identification of agents and in vitro antifungal susceptibility testing is highly recommended. Novel therapeutic strategies, such as combination therapy, are essential for increasing the efficacy and reducing the toxicity of antifungal agents. Therefore, we investigated the in vitro combination of micafungin plus voriconazole against multidrug-resistant C. auris isolated from cases of candidemia. Methods The in vitro interactions between echinocandins and azoles were determined against ten multidrug-resistant Candida auris strains by using a microdilution checkerboard technique. Results Results revealed that MICs range for voriconazole and micafungin were 0.5–8 and 0.25–8 mg/l, respectively. The checkerboard analysis revealed that the combination of micafungin with voriconazole exhibited synergistic activity against all 10 multidrug-resistant C. auris isolates (FICI range: 0.15–0.5). Overall, no antagonistic effects were observed in this experiments. Conclusion In vitro studies have previously suggested that among azoles isavuconazole and posaconazole are more active drugs against C. auris. In addition, the majority of isolates reported are resistant to fluconazole. Remarkably, unsuccessful treatment of C. auris infections with fluconazole, voriconazole, amphotericin B, caspofungin, and anidulafungin has been already on record. Here in we demonstrates that interaction between micafungin with voriconazole exhibited synergistic activity against multidrug-resistant C. auris isolates. It seems that lower concentrations of drugs cause fewer side-effects and improve the treatment outcomes. However, in vivo studies with suitable animal models of C. auris infection is highly recommended. Disclosures All authors: No reported disclosures.


1998 ◽  
Vol 42 (4) ◽  
pp. 767-771 ◽  
Author(s):  
Christine E. Swenson ◽  
Walter R. Perkins ◽  
Patricia Roberts ◽  
Imran Ahmad ◽  
Rachel Stevens ◽  
...  

ABSTRACT Amphotericin B lipid complex for injection (ABLC) is a suspension of amphotericin B complexed with the lipidsl-α-dimyristoylphosphatidylcholine (DMPC) andl-α-dimyristoylphosphatidylglycerol. ABLC is less toxic than amphotericin B deoxycholate (AmB-d), while it maintains the antifungal activity of AmB-d. Active amphotericin B can be released from ABLC by exogenously added (snake venom, bacteria, orCandida-derived) phospholipases or by phospholipases derived from activated mammalian vascular tissue (rat arteries). Such extracellular phospholipases are capable of hydrolyzing the major lipid in ABLC. Mutants of C. albicans that were resistant to ABLC but not AmB-d in vitro were deficient in extracellular phospholipase activity, as measured on egg yolk agar or as measured by their ability to hydrolyze DMPC in ABLC. ABLC was nevertheless effective in the treatment of experimental murine infections produced by these mutants. Isolates of Aspergillus species, apparently resistant to ABLC in vitro (but susceptible to AmB-d), were also susceptible to ABLC in vivo. We suggest that routine in vitro susceptibility tests with ABLC itself as the test material may not accurately predict the in vivo activity of ABLC and that the enhanced therapeutic index of ABLC relative to that of AmB-d in vivo may be due, in part, to the selective release of active amphotericin B from the complex at sites of fungal infection through the action of fungal or host cell-derived phospholipases.


Author(s):  
Ernani Canuto Figueiredo Junior ◽  
◽  
Yuri Wanderley Cavalcanti ◽  
Andressa Brito Lira ◽  
Hilzeth de Luna Freire Pessoa ◽  
...  

This study determined phytochemical composition, antifungal activity and toxicity in vitro and in vivo of Syzygium cumini leaves extract (Sc). Thus, was characterized by gas chromatography coupled to mass spectrometry and submitted to determination of Minimum Inhibitory (MIC) and Fungicidal concentrations (MFC) on reference and clinical strains of Candida spp. and by growth kinetics assays. Toxicity was verified using in vitro assays of hemolysis, osmotic fragility, oxidant and antioxidant activity in human erythrocytes and by in vivo acute systemic toxicity in Galleria mellonella larvae. Fourteen different compounds were identified in Sc, which showed antifungal activity (MIC between 31.25-125 μg/mL) with fungistatic effect on Candida. At antifungal concentrations, it demonstrated low cytotoxicity, antioxidant activity and neglible in vivo toxicity. Thus, Sc demonstrated a promising antifungal potential, with low toxicity, indicating that this extract can be a safe and effective alternative antifungal agent.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2153
Author(s):  
Anca Delia Mare ◽  
Cristina Nicoleta Ciurea ◽  
Adrian Man ◽  
Mihai Mareș ◽  
Felicia Toma ◽  
...  

Biosynthesis is a green method for the synthesis of silver nanoparticles (AgNPs). This study aimed to assess the antifungal activity of two silver nanoparticle solutions, synthesized using beech bark extract (BBE) and acetate and nitrate silver salts (AgNP Acetate BBE and AgNP Nitrate BBE), their influence on biofilm production, their potential synergistic effects with fluconazole, on different Candida spp., and their influence on virulence factors of C. albicans (germ tube production, gene expression for ALS3, SAP2, HSP70). Both the AgNP BBEs presented different minimum inhibitory concentrations for all the studied Candida spp., but biofilm production was inhibited only for C. albicans and C. guilliermondii. The growth rates of all the studied Candida spp. were inhibited in the presence of both AgNP BBEs, except for C. auris. Synergistic activity was observed for C. parapsilosis and C. guilliermondii, for different combinations of fluconazole with both the AgNP BBEs. The germ tube production of C. albicans was slightly inhibited by the AgNP BBEs. Only AgNP Acetate BBE was able to down-regulate the expression of SAP2. Overall, we can conclude that, even if more studies are necessary, AgNPs synthesized with beech bark extract might be an interesting alternative to classic antifungal treatments.


Sign in / Sign up

Export Citation Format

Share Document