Potential benefits of Tricetin in medicine for the treatment of cancers and other health-related disorders: Medicinal importance and therapeutic benefit

2021 ◽  
Vol 12 ◽  
Author(s):  
Dinesh Kumar Patel

Background: Medicinal plants have been used in medicine for the treatment of numerous diseases due to their medicinal properties and pharmacological activities. Popularity of herbal based drugs in the health sector has been increasing due to patient compliance and cost effectiveness. Herbal drugs derived from plant and animal source have been used in the Ayurvedic, Homeopathic, and Naturopathic system of medicine. Medicinal plants have been used as fuel, clothing, shelter and food material in worldwide since very early age. Phytoconstituents are pure plant chemicals found in different parts of the plant material. Flavonoids are important class of phytochemical found in medicinal plants and their derived products. Methods: In order to know the biological importance of tricetin, in the present investigation scientific data of tricetin in respect to their medicinal importance and pharmacological activities were collected and analyzed. Literature database such as Google, PubMed, Science Direct and Scopus has been searched using term tricetin and flavonoid. All the scientific information has been collected from these databases to know the biological importance of tricetin. Analytical data of tricetin have been also collected and analyzed in the present work to know the isolation, separation and identification procedure of trice Results: Scientific data analysis of different research work revealed the presence of tricetin in Triticum dicoccum, Lathyrus pratensis, Eucalyptus globules, Thuja occidentalis and Metasequoia glyptostroboides. Scientific data analysis signified biological importance of tricetin against different form of cancerous disorders, human osteosarcoma, glioblastoma multiforme, human breast adenocarcinoma, human non‑small cell lung cancer and liver cancer. Scientific data analysis also signified biological potential of tricetin against inflammation, neurodegenerative diseases, atherosclerosis, diabetes and respiratory syncytial virus infection. Scientific data analysis revealed the biological importance of tricetin against multidrug resistance and free radicals. Conclusions: Scientific data analysis revealed biological importance and pharmacological activities of tricetin against various form of human disorders including cancer, inflammation, neurodegeneration, atherosclerosis and diabetes.

2021 ◽  
Vol 17 ◽  
Author(s):  
Kanika Patel ◽  
Dinesh Kumar Patel

Background: Herbal drugs and their derived phytochemicals have been used in medicine for the preparation of different types of pharmaceutical products. Pure phytochemicals including flavonoids, alkaloids and terpenoids have been used in medicine for the treatment of different types of human disorders including cancerous disorders. Flavonoids have been well known in medicine for their anti-viral, anti-bacterial, anti-inflammatory, anti-diabetic, anti-cancer, anti-aging and cardioprotective potential. Avicularin, also called quercetin-3-α-l-arabino furanoside, is a pure flavonoid, a class of phytochemicals, found to be present in Lindera erythrocarpa and Lespedeza cuneata. Avicularin has been well known in medicine for its anti-cancer properties. Methods: In the present work, scientific data of avicularin have been collected from different databases such as Google, PubMed, Science Direct, Google Scholar and Scopus and summarized with reference to medicinal importance, pharmacological activities and analytical aspects of avicularin. The present review summarized the health beneficial properties of avicularin in medicine through data analysis of various scientific research works. Further analytical progress in medicine for the qualitative and quantitative analysis of avicularin in medicine has been also discussed in the present work. Results: Scientific data analysis of different literature work revealed the biological importance of flavonoid class of phytochemical ‘avicularin’ in medicine. Scientific data analysis revealed that avicularin was found to be present in the Lindera erythrocarpa, Lespedeza cuneata, Rhododendron schlipenbachii and Psidium guajava. Avicularin has been well known in medicine for its anti-inflammatory, anti-allergic, anti-oxidant, anti-tumor and hepatoprotective activities. Avicularin protects cardiomyocytes and hepatocytes against oxidative stress-induced apoptosis and induces cytotoxicity in cancer lines and tumor tissues. Avicularin has positive influence on human hepatocellular carcinoma and inhibits intracellular lipid accumulation. The role of avicularin in rheumatoid arthritis has been also established with its underlying molecular mechanisms in the scientific work. Recent interest in avicularin has focused on pharmacological investigations for its anti-cancer activity in the medicine. Conclusion: The present work signified the biological importance of avicularin in medicine through its medicinal uses, pharmacological activities and analytical aspects in the biological system.


2021 ◽  
Vol 01 ◽  
Author(s):  
Dinesh Kumar Patel

Background: Natural products and their derived phytochemicals have been used in the medicine and gaining importance in the modern medicine due to their therapeutic potential and health beneficial effect on human disorders. Plenty of herbal drug based products are available in the market and playing an important role in the human health care system due to their health beneficial properties in human being. In the modern age we can find many herbal based products in the market mainly prepared from the natural products and used for the prevention and treatment of various human disorders. Benzylisoquinoline alkaloids are the important class of alkaloidal compounds and the better example are morphine, codeine, sanguinarine, berberine and canadine which are mainly known for their medicinal value in the medicine. Methods: Hydrastis canadensis is the important medicinal plant found to contain a significant amount of canadine, hydrastine and berberine. In the present investigation, numerous scientific databases such as Google, Pubmed, Science direct etc. have been searched to collect the important scientific information of canadine and analyzed to know the health beneficial aspect of canadine in the medicine. All the collected scientific information data’s were analyzed and have been categorized into mainly pharmacological and analytical aspects. Results: From the analysis of the collected scientific information, it was found that Hydrastis canadensis contain significant amount of canadine with many more phytochemical including canadaline, hydrastidine, isohydrastidine etc. Pharmacological activity data analysis revealed the biological importance of Hydrastis canadensis in the medicine for their traditional uses against gastritis, colitis, duodenal ulcers, loss of appetite, liver disease, bile secretion disorder, snake bites and vaginitis in the medicine. However, scientific data analysis of canadine revealed their effectiveness for their acetylcholinesterase inhibitory activity, anti-cancer, anti-microbial, anti-allergic activity and anti-oxidant activity. Different modern analytical tools have been used in the modern medicine for the isolation and quantification of canadine in the Hydrastis canadensis. Conclusion: Present investigation revealed the medicinal importance and pharmacological activities of a canadine in the medicine for the treatment of numerous human health complications. These scientific data will be helpful to the scientist to know the biological importance of canadine in the medicine against various forms of human complications.


2021 ◽  
Vol 14 ◽  
Author(s):  
Dinesh Kumar Patel

Backgrounds: Plants and their derived products have been used in the traditional system of medicine for the treatment of various forms of human disorders since very ancient time. In the traditional system of medicine and modern allopathic medicine, numerous phytoconstituents have been used for the preparation of various types of formulation. Flavonoidal class phytochemicals are the main active phytoconstituents of plants, fruit, vegetables and beverages. Flavonoidal class phytochemicals are more referred as “nutraceuticals” due to their important pharmacological activities in the mammalian body. Methods: In order to understand the health beneficial effects of flavonoidal class chemical, present work summarized the health beneficial aspects of pectolinarin. Present work summarized the medicinal importance, pharmacological activities and analytical aspects of pectolinarin with various experimental models and advance analytical methods. However, all the collected scientific information’s have been analyzed in the present work for their health beneficial potential. Results: From the analysis of all the collected scientific information in the present work it was found that pectolinarin is an important phytochemical found to be present in the numerous medicinal plants but especially found in Cirsium japonicum which is an important medicinal herb of Korea, China and Japan. Pharmacological activities data analysis signified the health beneficial potential of pectolinarin for their anti-rheumatoid arthritis, analgesic, anti-inflammatory, hepatoprotective, anti-diabetic, anti-tumor, anti-dengue, antiviral, neuroprotective and antidepressant activity. However effectiveness of pectolinarin in central nervous system, bone, liver and cancerous disorders have been also reported in the literature. Analysis of present scientific information revealed the health beneficial potential of pectolinarin in the modern medicine due to their numerous pharmacological activities in different part of biological systems. Due to their biological importance in food and human health, a better understanding of their biological activities indicates their potentials as therapeutic agents. Conclusion: Scientific data of the present work signified the biological potential and therapeutic benefit of pectolinarin.


2021 ◽  
Vol 17 ◽  
Author(s):  
Dinesh Kumar Patel

Background: Phytochemicals are pure chemical compounds found to be present in different plants part such as leaves, fruit, flower, seeds and the whole plant. These pure plant-based chemicals are having power to treat all disorders of the human beings and other higher animal species on earth. Flavonoidal compounds are responsible for the attractive color and important biological properties of plant material. Flavonoids are having a potential role in the treatment of numerous health complications of human beings. Antioxidant properties are one of the best pharmacological properties of all classes of flavonoidal compounds. A significant amount of these flavonoidal compounds are needed in our daily routine diet. Methods: Cirsiliol also called 5,3′,4′-trihydroxy-6,7-dimethoxyflavone is a flavonoidal class chemical found to be present in different plants including Salvia guaranitica. Various literature databases have been searched to know the biological potential of the cirsiliol in medicine. Different scientific research data of cirsiliol have been collected from various literature sources and analyzed in the present work. Detail pharmacological activities of cirsiliol in medicine have been evaluated in the present work through literature data analysis of various scientific research works. However analytical data has also been collected and analyzed in the present work through different literature sources. Results: From the collected data, it was found that cirsiliol is present in the plants such as Artemisia campestris, Artemisia scoparia, Centaurea jacea, Centaurea phyllocephala, Crossostephium chinense, Dracocephalum tanguticum, Eupatorium lindleyanum, Hyptis pectinata, and Iris germanica. Pharmacological data analysis revealed the biological importance of cirsiliol against cancer, inflammatory diseases, obesity-related insulin resistance, and respiratory disorders. However, the biological potential on ileum, benzodiazepine receptor, arachidonate 5-lipoxygenase, and xanthine oxidase has also been well summarized in the present investigation. High-performance liquid chromatography, bioactivity-guided isolation techniques, UPLC-ESI-MS/MS, LC-MS and HPLC, and other forms of chromatographic techniques have been applicable for the analysis of cirsiliol in the various plants material. Conclusion: The present investigation revealed the biological importance and therapeutic benefit of cirsiliol in medicine for the development of better remedies against human disorders.


Sign in / Sign up

Export Citation Format

Share Document