Automated Diagnostic Hybrid Lesion Detection System for Diabetic Retinopathy Abnormalities

Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

Background: Early diagnosis, monitoring disease progression, and timely treatment of Diabetic Retinopathy (DR) abnormalities can efficiently prevent visual loss. A prediction system for the early intervention and prevention of eye diseases is important. The contrast of raw fundus image is also a hindrance in effective manual lesion detection technique. Methods: In this research paper, an automated lesion detection diagnostic scheme has been proposed for early detection of retinal abnormalities of red and yellow pathological lesions. The algorithm of the proposed Hybrid Lesion Detection (HLD) includes retinal image pre-processing, blood vessel extraction, optical disc localization and detection stages for detecting the presence of diabetic retinopathy lesions. Automated diagnostic systems assist the ophthalmologists practice manual lesion detection techniques which are tedious and time-consuming. Detailed statistical analysis is performed on the extracted shape, intensity and GLCM features and the optimal features are selected to classify DR abnormalities. Exhaustive statistical investigation of the proposed approach using visual and empirical analysis resulted in 31 significant features. Results: The results show that the HLD approach achieved good classification results in terms of three statistical indices: accuracy, 98.9%; sensitivity, 97.8%; and specificity, 100% with significantly less complexity. Conclusion: The proposed technique with optimal features demonstrates improvement in accuracy as compared to state of the art techniques using the same database.

Oncology ◽  
2017 ◽  
pp. 542-558
Author(s):  
Uzma Jamil ◽  
Shehzad Khalid

Application of computational intelligence techniques helps physicians as well as dermatologists in faster data process to give better and more reliable diagnoses. The whole system is categorized as: Pre-processing the lesion image to enhance its readability, Segmentation of the Lesion from skin, Feature extraction, selection, and finally the identification of dermoscopic images. Pros and cons of various methods are focused to provide a help for the researchers starting work in automated lesion detection system. Numerous computerized diagnostic systems have been reported in which different border detection, feature extraction, selection, and classification algorithms are used. The aim of this review is to summarize and compare advanced dermoscopic algorithms used for the classification of skin lesions and discuss important issues affecting the success of classification. This paper will be a guide that represents a comprehensive guideline for selecting suitable algorithms needed for different steps of automatic diagnostic procedure for ensuring timely diagnosis of skin cancer.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6549
Author(s):  
Roberto Romero-Oraá ◽  
María García ◽  
Javier Oraá-Pérez ◽  
María I. López-Gálvez ◽  
Roberto Hornero

Diabetic retinopathy (DR) is characterized by the presence of red lesions (RLs), such as microaneurysms and hemorrhages, and bright lesions, such as exudates (EXs). Early DR diagnosis is paramount to prevent serious sight damage. Computer-assisted diagnostic systems are based on the detection of those lesions through the analysis of fundus images. In this paper, a novel method is proposed for the automatic detection of RLs and EXs. As the main contribution, the fundus image was decomposed into various layers, including the lesion candidates, the reflective features of the retina, and the choroidal vasculature visible in tigroid retinas. We used a proprietary database containing 564 images, randomly divided into a training set and a test set, and the public database DiaretDB1 to verify the robustness of the algorithm. Lesion detection results were computed per pixel and per image. Using the proprietary database, 88.34% per-image accuracy (ACCi), 91.07% per-pixel positive predictive value (PPVp), and 85.25% per-pixel sensitivity (SEp) were reached for the detection of RLs. Using the public database, 90.16% ACCi, 96.26% PPV_p, and 84.79% SEp were obtained. As for the detection of EXs, 95.41% ACCi, 96.01% PPV_p, and 89.42% SE_p were reached with the proprietary database. Using the public database, 91.80% ACCi, 98.59% PPVp, and 91.65% SEp were obtained. The proposed method could be useful to aid in the diagnosis of DR, reducing the workload of specialists and improving the attention to diabetic patients.


Author(s):  
Uzma Jamil ◽  
Shehzad Khalid

Application of computational intelligence techniques helps physicians as well as dermatologists in faster data process to give better and more reliable diagnoses. The whole system is categorized as: Pre-processing the lesion image to enhance its readability, Segmentation of the Lesion from skin, Feature extraction, selection, and finally the identification of dermoscopic images. Pros and cons of various methods are focused to provide a help for the researchers starting work in automated lesion detection system. Numerous computerized diagnostic systems have been reported in which different border detection, feature extraction, selection, and classification algorithms are used. The aim of this review is to summarize and compare advanced dermoscopic algorithms used for the classification of skin lesions and discuss important issues affecting the success of classification. This paper will be a guide that represents a comprehensive guideline for selecting suitable algorithms needed for different steps of automatic diagnostic procedure for ensuring timely diagnosis of skin cancer.


2017 ◽  
pp. 1327-1342
Author(s):  
Uzma Jamil ◽  
Shehzad Khalid

Application of computational intelligence techniques helps physicians as well as dermatologists in faster data process to give better and more reliable diagnoses. The whole system is categorized as: Pre-processing the lesion image to enhance its readability, Segmentation of the Lesion from skin, Feature extraction, selection, and finally the identification of dermoscopic images. Pros and cons of various methods are focused to provide a help for the researchers starting work in automated lesion detection system. Numerous computerized diagnostic systems have been reported in which different border detection, feature extraction, selection, and classification algorithms are used. The aim of this review is to summarize and compare advanced dermoscopic algorithms used for the classification of skin lesions and discuss important issues affecting the success of classification. This paper will be a guide that represents a comprehensive guideline for selecting suitable algorithms needed for different steps of automatic diagnostic procedure for ensuring timely diagnosis of skin cancer.


Author(s):  
Muhammad Nadeem Ashraf ◽  
Muhammad Hussain ◽  
Zulfiqar Habib

Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.


2020 ◽  
Vol 14 ◽  
Author(s):  
Charu Bhardwaj ◽  
Shruti Jain ◽  
Meenakshi Sood

: Diabetic Retinopathy is the leading cause of vision impairment and its early stage diagnosis relies on regular monitoring and timely treatment for anomalies exhibiting subtle distinction among different severity grades. The existing Diabetic Retinopathy (DR) detection approaches are subjective, laborious and time consuming which can only be carried out by skilled professionals. All the patents related to DR detection and diagnoses applicable for our research problem were revised by the authors. The major limitation in classification of severities lies in poor discrimination between actual lesions, background noise and other anatomical structures. A robust and computationally efficient Two-Tier DR (2TDR) grading system is proposed in this paper to categorize various DR severities (mild, moderate and severe) present in retinal fundus images. In the proposed 2TDR grading system, input fundus image is subjected to background segmentation and the foreground fundus image is used for anomaly identification followed by GLCM feature extraction forming an image feature set. The novelty of our model lies in the exhaustive statistical analysis of extracted feature set to obtain optimal reduced image feature set employed further for classification. Classification outcomes are obtained for both extracted as well as reduced feature set to validate the significance of statistical analysis in severity classification and grading. For single tier classification stage, the proposed system achieves an overall accuracy of 100% by k- Nearest Neighbour (kNN) and Artificial Neural Network (ANN) classifier. In second tier classification stage an overall accuracy of 95.3% with kNN and 98.0% with ANN is achieved for all stages utilizing optimal reduced feature set. 2TDR system demonstrates overall improvement in classification performance by 2% and 6% for kNN and ANN respectively after feature set reduction, and also outperforms the accuracy obtained by other state of the art methods when applied to the MESSIDOR dataset. This application oriented work aids in accurate DR classification for effective diagnosis and timely treatment of severe retinal ailment.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 656
Author(s):  
Xavier Larriva-Novo ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera ◽  
Mario Sanz Rodrigo

Security in IoT networks is currently mandatory, due to the high amount of data that has to be handled. These systems are vulnerable to several cybersecurity attacks, which are increasing in number and sophistication. Due to this reason, new intrusion detection techniques have to be developed, being as accurate as possible for these scenarios. Intrusion detection systems based on machine learning algorithms have already shown a high performance in terms of accuracy. This research proposes the study and evaluation of several preprocessing techniques based on traffic categorization for a machine learning neural network algorithm. This research uses for its evaluation two benchmark datasets, namely UGR16 and the UNSW-NB15, and one of the most used datasets, KDD99. The preprocessing techniques were evaluated in accordance with scalar and normalization functions. All of these preprocessing models were applied through different sets of characteristics based on a categorization composed by four groups of features: basic connection features, content characteristics, statistical characteristics and finally, a group which is composed by traffic-based features and connection direction-based traffic characteristics. The objective of this research is to evaluate this categorization by using various data preprocessing techniques to obtain the most accurate model. Our proposal shows that, by applying the categorization of network traffic and several preprocessing techniques, the accuracy can be enhanced by up to 45%. The preprocessing of a specific group of characteristics allows for greater accuracy, allowing the machine learning algorithm to correctly classify these parameters related to possible attacks.


Sign in / Sign up

Export Citation Format

Share Document