Tabernaemontana divaricata Stem and Latex Proteases as Haemostatic Agent with Temporally Spaced Intense Fibrinogenolytic and Mild Fibrinolytic Activity

2020 ◽  
Vol 9 (2) ◽  
pp. 134-142
Author(s):  
Maheshwari K. Singh ◽  
Deepthi. N. Rao ◽  
Bedathur A. Sathish ◽  
Sunku P. Soundarya ◽  
Anusha Rajagopalan ◽  
...  

Background: Proteases play a crucial role in the pharmacological properties of latex producing plants. Some of them exhibited intervention with fibrinogenolysis and/or fibrinolysis, two crucial wound healing events. Objective: To evaluate wound healing potential of crude and partially purified enzyme from Tabernaemontana divaricata (stem and latex). Materials and Methods: Proteolytic activity, clot inducing/dissolving potential, fibrinogen polymerization, recalcification time, blood clot lysis and Tricine-SDS PAGE for enzyme treated fibrinogen and human plasma clot were performed. Results: Latex PPE exhibited significant proteolytic activity (115.8 ± 0.3 U/ml) compared to that of the stem (28.78 ± 0.2 U/ml). Enzyme preparations exhibited temporally spaced clot inducing and subsequent dissolving properties favoring hemostatic effect, procoagulant effect being dominant and the first event. Significant reduction in fibrinogen absorbance at 540 nm with time, recalcification time and human fibrinogenolytic product analysis on Tricine PAGE substantiated procoagulant effect. Disappearance of Aα and Bβ fibrinopeptides by both stem and latex PPEs in the PAGE was observed. γ subunits were completely hydrolysed by latex PPE, however, it showed comparative resistance to stem PPE. Reduction in blood clot weight and fibrin subunit intensity supported thrombolytic property. Conclusion: The study provides evidence of the procoagulant and thrombolytic activity associated with T. divaricata proteases.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Konstanty Szułdrzyński ◽  
Miłosz Jankowski ◽  
Daniel P. Potaczek ◽  
Anetta Undas

Aims. Fibrin formation and histidine-rich glycoprotein (HRG) are involved in primary hemostasis and wound healing. Little is known regarding the relationship of clot characteristics, bleeding time, and wound healing. Methods and Results. We studied 154 patients with coronary artery disease (CAD) and 154 subjects free of CAD matched for age, obesity, and current smoking. We evaluated bleeding time (BT) using standardized skin incisions on a forearm, along with plasma clot permeability (Ks), clot lysis time (CLT), and histidine-rich glycoprotein (HRG). Compared with controls, BT was 45% shorter in CAD cases. CAD patients had 32% lower Ks and 17% longer CLT as well as 50% lower HRG compared with controls (all p<0.001). After adjusting for potential confounders, Ks and HRG levels were independent predictors of prolonged BT in CAD patients (OR 23.70, 95% CI 4.65-120.8 and OR 10.27, 95% CI 2.05-51.31, respectively) and controls (OR 10.89, 95% CI 2.31-51.11 and OR 4.54, 95% CI 1.07-19.27, respectively). Scar formation (n=79, 25.6%) was independently predicted by both short and prolonged BT in CAD cases (OR 21.87, 95% CI 7.41-64.55 and OR 10.17, 95% CI 2.88-35.97) and controls (OR 5.94, 95% CI 2.29-15.41 and OR 14.76, 95% CI 4.29-50.77, respectively). Conclusions. The study shows that plasma fibrin clot density and HRG may influence BT and that appropriate skin wound healing is associated with medium BT. Translational Perspective. Elucidation of the complex relationships between plasma fibrin clot phenotype and wound healing might have important practical implications.


1992 ◽  
Vol 68 (06) ◽  
pp. 672-677 ◽  
Author(s):  
Hitoshi Yahara ◽  
Keiji Matsumoto ◽  
Hiroyuki Maruyama ◽  
Tetsuya Nagaoka ◽  
Yasuhiro Ikenaka ◽  
...  

SummaryTissue-type plasminogen activator (t-PA) is a fibrin-specific agent which has been used to treat acute myocardial infarction. In an attempt to clarify the determinants for its rapid clearance in vivo and high affinity for fibrin clots, we produced five variants containing amino acid substitutions in the finger domain, at amino acid residues 7–9, 10–14, 15–19, 28–33, and 37–42. All the variants had a prolonged half-life and a decreased affinity for fibrin of various degrees. The 37–42 variant demonstrated about a 6-fold longer half-life with a lower affinity for fibrin. Human plasma clot lysis assay estimated the fibrinolytic activity of the 37–42 variant to be 1.4-fold less effective than that of the wild-type rt-PA. In a rabbit jugular vein clot lysis model, doses of 1.0 and 0.15 mg/kg were required for about 70% lysis in the wild-type and 37–42 variant, respectively. Fibrinogen was degraded only when the wild-type rt-PA was administered at a dose of 1.0 mg/kg. These findings suggest that the 37–42 variant can be employed at a lower dosage and that it is a more fibrin-specific thrombolytic agent than the wild-type rt-PA.


1990 ◽  
Vol 63 (01) ◽  
pp. 076-081 ◽  
Author(s):  
Pascale Gaussem ◽  
Sophie Gandrille ◽  
Pascale Molho-Sabatier ◽  
Loïc Capron ◽  
Jean-Noël Fiessinger ◽  
...  

SummaryUsing a monoclonal antibody-based assay, we measured the fibrin degradation product release in the supernatant of plasma clots obtained before and after venous occlusion (VO) in 30 patients with definite or suspected vascular thrombosis (19 definite and 2 suspected deep vein thrombosis, 6 recurrent superficial thrombophlebitis, 3 arterial occlusions of lower limbs). tPA and PAI-1 concentrations were determined using ELISA assays; the post-occlusion values were corrected for haemoconcentration. The increase in tPA during VO was correlated with haemoconcentration (r = 0.74), but 3 patients had ineffective VO (<2% increase in proteins). The fibrinolytic response to VO was evaluated using the shortening of the time necessary for the release of 200 μg of fibrin degradation products per mg of fibrinogen (Δ T 200). Two among the 27 patients with effective VO were bad responders with a Δ T 200 <3 h (whereas all the others had Δ T 200 >10 h). These patients had respectively a deficient tPA release (Δ tPA = 1 ng/ml) and an elevated PAI-1 level at rest (33 ng/ml). Several other patients were bad responders in terms of tPA release or of shortening of the euglobulin clot lysis time but they had a normal Δ T 200. This plasma clot test reflects the ability of free tPA to bind to fibrin (the amount of which depends on the level of tPA and PAI-1), and may be useful in the diagnosis of a hypofibrinolytic state.


1993 ◽  
Vol 70 (02) ◽  
pp. 326-331 ◽  
Author(s):  
H R Lijnen ◽  
B Van Hoef ◽  
R A G Smith ◽  
D Collen

SummaryThe kinetic and fibrinolytic properties of a reversibly acylated stoichiometric complex between human plasmin and recombinant staphylokinase (plasmin-STAR complex) were evaluated. The acylation rate constant of plasmin-STAR by p-amidinophenyl-p’-anisate-HCI was 52 M-1 s-1 and its deacylation rate constant 1.2 × 10-4 s-1 (t½ of 95 min) which are respectively 50-fold and around 3-fold lower than for the plasmin-streptokinase complex. The acylated complex was stable as evidenced by binding to lysine-Sepharose. However, following an initial short lag phase, the acylated plasmin-STAR complex activated plasminogen at a similar rate as the unblocked complex, whereas the acylated plasmin-streptokinase complex did not activate plasminogen. These findings indicate that STAR, unlike streptokinase, dissociates from its acylated complex with plasmin in the presence of excess plasminogen. In agreement with this hypothesis, the time course of the lysis of a 125I-fibrin labeled plasma clot submerged in citrated human plasma, is similar for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR (50% clot lysis in 2 h requires 12 nM of each agent). The plasma clearances of STAR-related antigen following bolus injection in hamsters were 1.0 to 1.5 ml/min for acylated plasmin-STAR, unblocked plasmin-STAR and free STAR, as a result of short initial half-lives of 2.0 to 2.5 min.The dissociation of the anisoylated plasmin-STAR complex and its consequent rapid clearance suggest that it has no apparent advantages as compared to free STAR for clinical thrombolysis.


1991 ◽  
Vol 65 (05) ◽  
pp. 549-552 ◽  
Author(s):  
A Blinc ◽  
G Planinšič ◽  
D Keber ◽  
O Jarh ◽  
G Lahajnar ◽  
...  

SummaryMagnetic resonance imaging was employed to study the dependence of clot lysing patterns on two different modes of transport of urokinase into whole blood clots. In one group of clots (nonperfused clots, n1 = 10), access of urokinase to the fibrin network was possible by diffusion only, whereas in the other group (perfused clots, n2 = 10) bulk flow of plasma containing urokinase was instituted through occlusive clots by a pressure difference of 3 .7 kPa (37 cm H2O) across 3 cm long clots with a diameter of 4 mm. It was determined separately that this pressure difference resulted in a volume flow rate of 5.05 ± 2.4 × 10−2 ml/min through occlusive clots. Perfused clots diminished in size significantly in comparison to nonperfused ones already after 20 min (p <0.005). Linear regression analysis of two-dimensional clot sizes measured by MRI showed that the rate of lysis was more than 50-times faster in the perfused group in comparison to the nonperfused group. It was concluded that penetration of the thrombolytic agent into clots by perfusion is much more effective than by diffusion. Our results might have some implications for understanding the differences in lysis of arterial and venous thrombi.


1971 ◽  
Vol 25 (03) ◽  
pp. 391-404 ◽  
Author(s):  
J.D Geratz

Summary1. Aromatic diamidines which are potent inhibitors of trypsin possess a marked inhibitory effect on the clotting activity of human thrombin and on the prothrombin time and partial thromboplastin time of human plasma. They also block the contact activation phase of the coagulation process. The strongest inhibitor among the compounds tested was M & B 4596 which was followed in second place by pentamidine.2. Pentamidine was 10 times more active than ε-ACA in impeding streptokinase-induced lysis of human plasma clots. It was 100-200 times stronger than ε-ACA in inhibiting the activation of bovine plasminogen by activators formed from the interaction between streptokinase and either human plasmin(ogen) or human plasma.3. The prothrombin time and partial thromboplastin time of canine plasma were less susceptible to inhibition by pentamidine than the same tests on human plasma. Clot lysis in the canine system was inhibited by pentamidine to a similar degree as in the human system. After intravenous injection of pentamidine in the dog there occurred the expected prolongation of the partial thromboplastin time and of the clot lysis time.


1992 ◽  
Vol 68 (02) ◽  
pp. 165-169 ◽  
Author(s):  
Timothy R Hare ◽  
Stephen J Gardell

SummaryVampire bat salivary plasminogen activator (BatPA), human tissue-type plasminogen activator (tPA) or streptokinase (SK) were incubated in human citrated plasma containing a plasma clot that was radiolabelled with iodine-125 fibrin(ogen). Complete clot dissolution by BatPA (30 nM) was associated with slight activation of “fluid phase” plasminogen; the plasma levels of functional fibrinogen and α2-antiplasmin decreased by only 8 and 19%, respectively. Addition of SK (3,600 IU/ml) to the clot-containing plasma caused complete clot lysis and massive activation of the “fluid phase” plasminogen, leading to >60 and 96% decreases of the functional levels of fibrinogen and α2-antiplasmin, respectively. Incubation of tPA (30 nM) in clot-containing plasma caused complete clot lysis as well as substantial activation of “fluid phase” plasminogen; the plasma levels of functional fibrinogen and α2-antiplasmin decreased by 45 and 79%, respectively. The profound degradation of fibrinogen in the SK and tPA but not BatPA-containing samples was confirmed by immunoblot analysis. Additional experiments showed that the presence of soluble clot lysate in plasma containing tPA enhanced the extent of fibrinogen degradation from 25% to >60%; the addition of soluble clot lysate to the plasma containing BatPA did not prompt further fibrinogen degradation. Finally, studies using exogenous α2-antiplasmin suggested that plasmin generated via tPA-mediated activation of “fluid phase” plasminogen does not play an important role in clot dissolution.


2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.


2002 ◽  
Vol 88 (08) ◽  
pp. 282-287 ◽  
Author(s):  
Anna Pentimone ◽  
Bianca Binetti ◽  
Marialisa Cramarossa ◽  
Donatella Piro ◽  
Nicola Semeraro ◽  
...  

SummaryHeparin has been proposed to enhance thrombolysis by inhibiting thrombin-dependent generation of activated TAFI (thrombin activatable fibrinolysis inhibitor), a carboxypeptidase that inhibits fibrinolysis. We evaluated the effect of heparin in an in vitro thrombolysis model consisting of a radiolabelled blood clot submerged in defibrinated plasma. Fibrinolysis was induced by adding t-PA (250 ng/ml) and calcium to the plasma bath. Control experiments indicated that thrombin generation induced by recalcification caused significant TAFI activation and inhibited clot lysis. Heparin (up to 1 U/ml), added to the plasma bath, failed to enhance clot lysis. Thrombin generation in the fluid phase was totally inhibited by heparin at concentrations > 0.5 U/ml. In contrast, thrombin generation on the clot surface was not inhibited by heparin (1 U/ml). TAFIa generation did occur in heparin-containing samples (1 U/ml) and amounted to about 10% of TAFIa formed in control samples. This low amount of TAFIa did exert antifibrinolytic activity as indicated by the observation that the addition of a specific TAFIa inhibitor (PTI) along with heparin enhanced clot lysis. Hirudin (10 µg/ml), at variance with heparin, inhibited clot-bound thrombin and enhanced clot lysis. These data show that heparin is unable to stimulate fibrinolysis through a TAFI-dependent mechanism, most likely because of its inefficiency in inhibiting thrombin generation on the clot surface. Moreover, they suggest that clot-bound thrombin plays a major role in TAFI-mediated inhibition of fibrinolysis through “localized” TAFIa generation.


1999 ◽  
Vol 270 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Albert P. Gadbut ◽  
John R. Schullek ◽  
Arthur M. Hanel ◽  
David R.E. MacAllan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document