Synthesis of Nanostructured Lipid Carriers Loaded Chitosan/ Carbopol Hybrid Nanocomposite Gel for Oral Delivery of Artemether and Curcumin

2020 ◽  
Vol 8 (5) ◽  
pp. 418-432
Author(s):  
Arun Kumar ◽  
Tapan Behl ◽  
Toshi Uniyal ◽  
Swati Chadha

Background: Antimalarial therapy remains the utmost effective means for the management of malarial parasites in the liver and red blood cells. The application of these therapeutic agents is hampered by their improper application, hepato-toxicity caused by their continuous use, and degradation by hepatic enzymes. Methods: Recent advancements in drug delivery applications have shown potential in improving the pharmacological properties of artemether. Nanostructured lipid carriers (NLCs) loaded chitosan (CH)/Carbopol (CB) hybrid gel was prepared using glycerol monostearate (GMS) as solid lipid and clove oil as a liquid lipid for artemether (ART) and curcumin (CR) for its localized effect on the liver. Results: The smaller particle size (~118 ± 1.0 nm) and high zeta potential (- 41.1 ± 6.46 mV) confirm the formulation and stability of NLCs. On the other hand, the shape and morphology of prepared NLCs and gel showed a spherical and wrinkled surface with a size range of 150-250 nm. The release studies of the NLC’s showed a controlled release of artemether (~ 92%) and curcumin (~ 83%) for up to 30 h. Photostability data showed that, approximately, ~86.5 ± 0.3% and ~60 ± 0.9% of nanoencapsulated artemether and curcumin were still detected on exposure to sunlight, respectively. It has been found from the permeation study that 69.8% and 49.1% of the drug was permeated across the mucus membrane in 24 h with a significant increase (P < 0.05) in flux as well as permeability coefficients. Conclusion: The overall results showed that prepared CH/CB/NLCs hybrid gel could be a promising vehicle for the effective delivery of ART and CR for the management of malarial parasites. Lay Summary: Antimalarial therapy remains the utmost effective means for the management of malarial parasites in liver and red blood cells. Recent advancements in drug delivery applications have shown potential in improving the pharmacological properties of artemether. Application of these therapeutic agents hampered by their improper application, hepato-toxicity caused by their continuous use and degradation by hepatic enzymes. To manage the above issues, we synthesize nanostructured lipid carriers (NLC’s) loaded chitosan (CH)/Carbopol (CB) hybrid gel using glycerol monostearate (GMS) as solid lipid and clove oil as liquid lipid for artemether (ATR) and curcumin (CR) for its local action in liver and the major criteria were to find a protective barrier with hepatoprotective nature of the curcumin.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243286
Author(s):  
Mira Woitok ◽  
Elena Grieger ◽  
Olusiji A. Akinrinmade ◽  
Susanne Bethke ◽  
Anh Tuan Pham ◽  
...  

In vitro and ex vivo development of novel therapeutic agents requires reliable and accurate analyses of the cell conditions they were preclinical tested for, such as apoptosis. The detection of apoptotic cells by annexin V (AV) coupled to fluorophores has often shown limitations in the choice of the dye due to interference with other fluorescent-labeled cell markers. The SNAP-tag technology is an easy, rapid and versatile method for functionalization of proteins and was therefore used for labeling AV with various fluorophores. We generated the fusion protein AV-SNAP and analyzed its capacity for the specific display of apoptotic cells in various assays with therapeutic agents. AV-SNAP showed an efficient coupling reaction with five different fluorescent dyes. Two selected fluorophores were tested with suspension, adherent and peripheral blood cells, treated by heat-shock or apoptosis-inducing therapeutic agents. Flow cytometry analysis of apoptotic cells revealed a strong visualization using AV-SNAP coupled to these two fluorophores exemplary, which was comparable to a commercial AV-Assay-kit. The combination of the apoptosis-specific binding protein AV with the SNAP-tag provides a novel solid method to facilitate protein labeling using several, easy to change, fluorescent dyes at once. It avoids high costs and allows an ordinary exchange of dyes and easier use of other fluorescent-labeled cell markers, which is of high interest for the preclinical testing of therapeutic agents in e.g. cancer research.


Author(s):  
Alessandra Cristina de Meneses ◽  
Elisa Balbi Pinto Marques ◽  
Fernanda Vitória Leimann ◽  
Odinei Hess Gonçalves ◽  
Rafael Porto Ineu ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9674
Author(s):  
Oliver S. Zhao ◽  
Nikhil Kolluri ◽  
Anagata Anand ◽  
Nicholas Chu ◽  
Ravali Bhavaraju ◽  
...  

Malaria is an infectious disease caused by Plasmodium parasites, transmitted through mosquito bites. Symptoms include fever, headache, and vomiting, and in severe cases, seizures and coma. The World Health Organization reports that there were 228 million cases and 405,000 deaths in 2018, with Africa representing 93% of total cases and 94% of total deaths. Rapid diagnosis and subsequent treatment are the most effective means to mitigate the progression into serious symptoms. However, many fatal cases have been attributed to poor access to healthcare resources for malaria screenings. In these low-resource settings, the use of light microscopy on a thin blood smear with Giemsa stain is used to examine the severity of infection, requiring tedious and manual counting by a trained technician. To address the malaria endemic in Africa and its coexisting socioeconomic constraints, we propose an automated, mobile phone-based screening process that takes advantage of already existing resources. Through the use of convolutional neural networks (CNNs), we utilize a SSD multibox object detection architecture that rapidly processes thin blood smears acquired via light microscopy to isolate images of individual red blood cells with 90.4% average precision. Then we implement a FSRCNN model that upscales 32 × 32 low-resolution images to 128 × 128 high-resolution images with a PSNR of 30.2, compared to a baseline PSNR of 24.2 through traditional bicubic interpolation. Lastly, we utilize a modified VGG16 CNN that classifies red blood cells as either infected or uninfected with an accuracy of 96.5% in a balanced class dataset. These sequential models create a streamlined screening platform, giving the healthcare provider the number of malaria-infected red blood cells in a given sample. Our deep learning platform is efficient enough to operate exclusively on low-tier smartphone hardware, eliminating the need for high-speed internet connection.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
Delma P. Thomas ◽  
Dianne E. Godar

Ultraviolet radiation (UVR) from all three waveband regions of the UV spectrum, UVA (320-400 nm), UVB (290-320 nm), and UVC (200-290 nm), can be emitted by some medical devices and consumer products. Sunlamps can expose the blood to a considerable amount of UVR, particularly UVA and/or UVB. The percent transmission of each waveband through the epidermis to the dermis, which contains blood, increases in the order of increasing wavelength: UVC (10%) < UVB (20%) < UVA (30%). To investigate the effects of UVR on white blood cells, we chose transmission electron microscopy to examine the ultrastructure changes in L5178Y-R murine lymphoma cells.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
T.W. Smith ◽  
J.A. Roberts ◽  
B.J. Martin

Chronic pyelonephritis is one of the most common diseases of the kidney and accounts for a sizeable number of cases of renal insufficiency in man, however its pathogenesis requires further elucidation. Transmission electron microscopy may serve as a uniquely effective means of observing details of the nature of this disease. The present paper describes preliminary results of an ultrastructural study of chronic pyelonephritis in Macaca arctoides (stumptail monkey).The infection was induced in these experiments in a retrograde fashion by means of a unilateral catheterization of the left ureter whereby an innoculum of 10 cc of broth containing approximately 2 billion E. coli per cc and radio-opaque dye were injected under pressure (mimicing vesico-ureteric reflux).


Sign in / Sign up

Export Citation Format

Share Document