Curcumin loaded and co-loaded nanosystems: A review from a biological activity enhancement perspective

2020 ◽  
Vol 08 ◽  
Author(s):  
Andrea Mariela Araya-Sibaja ◽  
Krissia Wilhelm ◽  
Gustavo Adolfo González-Aguilar ◽  
José Roberto Vega-Baudrit ◽  
Norma Julieta Salazar-López ◽  
...  

Background: Curcumin is a natural phenolic compound exhibiting multiple bioactivities that have been evaluated in vitro, in vivo as well as through clinical studies in humans. Some of them include antimicrobial, antioxidant, anti-inflammatory and central nervous system protective effects. Further, curcumin is considered a Generally Recognized as Safe substance because of its low toxicity. However, its molecular structure is susceptible to changes in pH, oxidation, photodegradation, low aqueous solubility and biotransformation compromising its bioavailability, drawbacks that have been successfully addressed through nanotechnology. Objective: The present review systematizes findings on the enhancement of curcumin’s beneficial effects when it is loaded and co-loaded into different types of nanosystems covering liposomes, polymeric and solid-lipid nanoparticles, nanostructured lipid carrier, lipid-polymeric hybrids, self-assembled and protein-based core-shell systems in relation to its antimicrobial, antioxidant, anti-inflammatory and central nervous system protective bioactivities. Conclusion: Curcumin is a versatile molecule capable of exerting antimicrobial, antioxidant, anti-inflammatory and central nervous system protective effects in an enhanced manner using the possibilities offered by the nanotechnology - based approach. Its enhanced bioactivities are associated with increments in solubility, stability, bioavailability as well as in improved intracellular uptake and cell internalization. These advantages, in addition to curcumin’s low toxicity, indicate the potential of curcumin to be loaded and co-loaded into nanosystems capable to provide a controlled release and targeted administration.

1999 ◽  
Vol 43 (8) ◽  
pp. 2101-2101
Author(s):  
Hideki Kita ◽  
Hirotami Matsuo ◽  
Hitomi Takanaga ◽  
Junichi Kawakami ◽  
Koujirou Yamamoto ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


1946 ◽  
Vol 84 (4) ◽  
pp. 277-292 ◽  
Author(s):  
S. Edward Sulkin ◽  
Christine Zarafonetis ◽  
Andres Goth

Anesthesia with diethyl ether significantly alters the course and outcome of experimental infections with the equine encephalomyelitis virus (Eastern or Western type) or with the St. Louis encephalitis virus. No comparable effect is observed in experimental infections produced with rabies or poliomyelitis (Lansing) viruses. The neurotropic virus infections altered by ether anesthesia are those caused by viruses which are destroyed in vitro by this anesthetic, and those infections not affected by ether anesthesia are caused by viruses which apparently are not destroyed by ether in vitro. Another striking difference between these two groups of viruses is their pathogenesis in the animal host; those which are inhibited in vivo by ether anesthesia tend to infect cells of the cortex, basal ganglia, and only occasionally the cervical region of the cord. On the other hand, those which are not inhibited in vivo by ether anesthesia tend to involve cells of the lower central nervous system and in the case of rabies, peripheral nerves. This difference is of considerable importance in view of the fact that anesthetics affect cells of the lower central nervous system only in very high concentrations. It is obvious from the complexity of the problem that no clear-cut statement can be made at this point as to the mechanism of the observed effect of ether anesthesia in reducing the mortality rate in certain of the experimental neurotropic virus infections. Important possibilities include a direct specific effect of diethyl ether upon the virus and a less direct effect of the anesthetic upon the virus through its alteration of the metabolism of the host cell.


2016 ◽  
Vol 38 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Mingfeng He ◽  
Hongquan Dong ◽  
Yahui Huang ◽  
Shunmei Lu ◽  
Shu Zhang ◽  
...  

Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s). Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM) was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.


2007 ◽  
Vol 57 (4) ◽  
pp. 441-450 ◽  
Author(s):  
Savita Vyas ◽  
Piyush Trivedi ◽  
Subhash Chaturvedi

Ketorolac-dextran conjugates: Synthesis,in vitroandin vivoevaluationKetorolac is a non-steroidal anti-inflammatory drug. Dextran conjugates of ketorolac (KD) were synthesized and characterized to improve ketorolac aqueous solubility and reduce gastrointestinal side effects. An N-acylimidazole derivative of ketorolac (KAI) was condensed with a model carrier polymer, dextran of different molecular masses (40000, 60000, 110000 and 200000). IR spectral data confirmed formation of ester bonding. Ketorolac contents were evaluated by UV-spectrophotometric analysis. The molecular mass was determined by measuring viscosity using the Mark-Howink-Sakurada equation. Invitrohydrolysis studies were performed in aqueous buffers (pH 1.2, 7.4, 9) and in 80% (V/V) human plasma (pH 7.4). At pH 9, a higher rate of ketorolac release from KD was observed as compared to aqueous buffer of pH 7.4 and 80% human plasma (pH 7.4), following first-order kinetics.In vivobiological screening in mice and rats indicated that conjugates retained analgesic and anti-inflammatory activities with significantly reduced ulcerogenicity compared to the parent drug.


2018 ◽  
Vol 5 (4) ◽  
pp. 96 ◽  
Author(s):  
Anders Bailey ◽  
Amreena Suri ◽  
Pauline Chou ◽  
Tatiana Pundy ◽  
Samantha Gadd ◽  
...  

Neuroblastoma (NB) is the most common extracranial solid tumor in pediatrics, with rare occurrences of primary and metastatic tumors in the central nervous system (CNS). We previously reported the overexpression of the polo-like kinase 4 (PLK4) in embryonal brain tumors. PLK4 has also been found to be overexpressed in a variety of peripheral adult tumors and recently in peripheral NB. Here, we investigated PLK4 expression in NBs of the CNS (CNS-NB) and validated our findings by performing a multi-platform transcriptomic meta-analysis using publicly available data. We evaluated the PLK4 expression by quantitative real-time PCR (qRT-PCR) on the CNS-NB samples and compared the relative expression levels among other embryonal and non-embryonal brain tumors. The relative PLK4 expression levels of the NB samples were found to be significantly higher than the non-embryonal brain tumors (p-value < 0.0001 in both our samples and in public databases). Here, we expand upon our previous work that detected PLK4 overexpression in pediatric embryonal tumors to include CNS-NB. As we previously reported, inhibiting PLK4 in embryonal tumors led to decreased tumor cell proliferation, survival, invasion and migration in vitro and tumor growth in vivo, and therefore PLK4 may be a potential new therapeutic approach to CNS-NB.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Mark F Sabbagh ◽  
Jeremy Nathans

Vascular endothelial cells (ECs) derived from the central nervous system (CNS) variably lose their unique barrier properties during in vitro culture, hindering the development of robust assays for blood-brain barrier (BBB) function, including drug permeability and extrusion assays. In previous work (Sabbagh et al., 2018) we characterized transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs. In this report, we compare transcriptional and accessible chromatin landscapes of acutely isolated mouse CNS ECs versus mouse CNS ECs in short-term in vitro culture. We observe that standard culture conditions are associated with a rapid and selective loss of BBB transcripts and chromatin features, as well as a greatly reduced level of beta-catenin signaling. Interestingly, forced expression of a stabilized derivative of beta-catenin, which in vivo leads to a partial conversion of non-BBB CNS ECs to a BBB-like state, has little or no effect on gene expression or chromatin accessibility in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ni Zhang ◽  
Lichong Zhu ◽  
Qiuhong Ouyang ◽  
Saisai Yue ◽  
Yichun Huang ◽  
...  

Polymyxin B (PMB) exert bactericidal effects on the cell wall of Gram-negative bacteria, leading to changes in the permeability of the cytoplasmic membrane and resulting in cell death, which is sensitive to the multi-resistant Gram-negative bacteria. However, the severe toxicity and adverse side effects largely hamper the clinical application of PMB. Although the molecular pathology of PMB neurotoxicity has been adequately studied at the cellular and molecular level. However, the impact of PMB on the physiological states of central nervous system in vivo may be quite different from that in vitro, which need to be further studied. Therefore, in the current study, the biocompatible ultra-uniform Fe3O4 nanoparticles were employed for noninvasively in vivo visualizing the potential impairment of PMB to the central nervous system. Systematic studies clearly reveal that the prepared Fe3O4 nanoparticles can serve as an appropriate magnetic resonance contrast agent with high transverse relaxivity and outstanding biosafety, which thus enables the following in vivo susceptibility-weighted imaging (SWI) studies on the PMB-treated mice models. As a result, it is first found that the blood-brain barrier (BBB) of mice may be impaired by successive PMB administration, displaying by the discrete punctate SWI signals distributed asymmetrically across brain regions in brain parenchyma. This result may pave a noninvasive approach for in-depth studies of PMB medication strategy, monitoring the BBB changes during PMB treatment, and even assessing the risk after PMB successive medication in multidrug-resistant Gram-negative bacterial infected patients from the perspective of medical imaging.


2013 ◽  
Vol 33 (7) ◽  
pp. 1115-1126 ◽  
Author(s):  
Basavaraju G Sanganahalli ◽  
Peter Herman ◽  
Fahmeed Hyder ◽  
Sridhar S Kannurpatti

Local calcium (Ca2 +) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca2 + uptake. Mitochondria take up Ca2 + through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca2 +. Known only in vitro, the in vivo impact of mCU activity may reveal Ca2 + -mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca2 + sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca2 + distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca2 + -dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca2 + uptake-mediated integrative role of in vivo mitochondria on neocortical activity.


2016 ◽  
Author(s):  
◽  
Christopher M. Owens

Injuries to nerves vary in their consequences, from weakened sensation and motor function to partial or complete paralysis. In the latter case, affecting about twenty thousand Americans yearly, the injury is debilitating and results in a significant decrease in quality of life. Currently there is no effective treatment for damage to the central nervous system, in particular the spinal cord. Compared to the injuries to the central nervous system, damage in the peripheral nerves, is more common, with about sixty thousand occurrences annually. The cost of associated surgical procedures and due to loss of function is in the billions. In this thesis we present work towards the construction and testing of a fully cellular, patented nerve graft, one amongst the first of its kind. For the fabrication of the graft we are the first to employ bioprinting (either implemented through a special purpose 3D bioprinter or manually), a novel tissue engineering method rapidly gaining acceptance and utility. We first review the status of bioprinting. We then detail the fabrication process. Next we report on the testing of the graft in an in vivo animal model through electrophysiology and histology. This is followed by the introduction of a novel in vitro model, aimed at providing a fast, inexpensive and reliable method to test engineered nerve grafts. We describe our work on the optimization of the in vitro assay and then the testing of the graft using the optimized assay. We conclude with a summary of our accomplishments and make suggestions for some exciting future applications of our approach.


Sign in / Sign up

Export Citation Format

Share Document