Balanced Impulse Radar System for Ultra-Wideband (UWB) Applications

Author(s):  
Xinfan Xia ◽  
Lihua Liu ◽  
Shengbo Ye ◽  
Hongfei Guan ◽  
Guangyou Fang
2017 ◽  
Vol 24 (1) ◽  
pp. 73-79
Author(s):  
Md. Moinul Islam ◽  
Mohammad Tariqul Islam ◽  
Mohammad Rashed Iqbal Faruque ◽  
Rabah W. Aldhaheri ◽  
Md. Samsuzzaman

AbstractA compact ultra-wideband (UWB) antenna is presented in this paper with a partial ground plane on epoxy woven glass material. The study is discussed to comprehend the effects of various design parameters with explicit parametric analyses. The overall antenna dimension is 0.22×0.26×0.016 λ. A prototype is made on epoxide woven glass fabric dielectric material of 1.6 mm thickness. The measured results point out that the reported antenna belongs to a wide bandwidth comprehending from 3 GHz to more than 11 GHz with VSWR<2. It has a peak gain of 5.52 dBi, where 3.98 dBi is the average gain. Nearly omnidirectional radiation patterns are observed within the operating frequency bands. A good term exists between simulation and measurement results, which lead the reported antenna to be an appropriate candidate for UWB applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Longzhu Cai ◽  
Huan Xu ◽  
Daping Chu

A wave interference filtering section that consists of three stubs of different lengths, each with an individual stopband of its own central frequency, is reported here for the design of band-stop filters (BSFs) with ultra-wide and sharp stopbands as well as large attenuation characteristics. The superposition of the individual stopbands provides the coverage over an ultra-wide frequency range. Equations and guidelines are presented for the application of a new wave interference technique to adjust the rejection level and width of its stopband. Based on that, an electrically tunable ultra-wide stopband BSF using a liquid crystal (LC) material for ultra-wideband (UWB) applications is designed. Careful treatment of the bent stubs, including impedance matching of the main microstrip line and bent stubs together with that of the SMA connectors and impedance adaptors, was carried out for the compactness and minimum insertion and reflection losses. The experimental results of the fabricated device agree very well with that of the simulation. The centre rejection frequency as measured can be tuned between 4.434 and 4.814 GHz when a biased voltage of 0–20 Vrms is used. The 3 dB and 25 dB stopband bandwidths were 4.86 GHz and 2.51 GHz, respectively, which are larger than that of other recently reported LC based tunable BSFs.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 4033 ◽  
Author(s):  
Yoo ◽  
Wang ◽  
Seol ◽  
Lee ◽  
Chung ◽  
...  

Recognizing and tracking the targets located behind walls through impulse radio ultra-wideband (IR-UWB) radar provides a significant advantage, as the characteristics of the IR-UWB radar signal enable it to penetrate obstacles. In this study, we design a through-wall radar system to estimate and track multiple targets behind a wall. The radar signal received through the wall experiences distortion, such as attenuation and delay, and the characteristics of the wall are estimated to compensate the distance error. In addition, unlike general cases, it is difficult to maintain a high detection rate and low false alarm rate in this through-wall radar application due to the attenuation and distortion caused by the wall. In particular, the generally used delay-and-sum algorithm is significantly affected by the motion of targets and distortion caused by the wall, rendering it difficult to obtain a good performance. Thus, we propose a novel method, which calculates the likelihood that a target exists in a certain location through a detection process. Unlike the delay-and-sum algorithm, this method does not use the radar signal directly. Simulations and experiments are conducted in different cases to show the validity of our through-wall radar system. The results obtained by using the proposed algorithm as well as delay-and-sum and trilateration are compared in terms of the detection rate, false alarm rate, and positioning error.


2020 ◽  
Vol 8 (5) ◽  
pp. 4517-4520

In this research paper a design of Microstip patch antenna for the ultra-wide band (UWB) applications is presented. Ultra wide band antennas has very wide band of operation which accommodates many communication frequencies as set by the federal commission of communication. The UWB antennas is based on the micro strip patch antenna concept and the design of the antenna is based on the stack antenna or multi-layer antenna. Stacking is used in designing for increasing the bandwidth of the antenna so stacking concept is good for the designing of the UWB antenna. The feeding used to feed the antenna is micro strip line feed. Micro strip line feeding technique is one of very popular feeding technique to feed the antenna because its fabrication is very simple. The proposed design is simulated in the CADFEKO software which is very useful for the design and analysis of a wide range of electromagnetic problem. It has many applications to simulate 3D electromagnetic circuit included antenna design, micro strip antenna and circuits. The simulation results shows the antenna bandwidth of 13.9 GHz from 2.6 to 16.5 GHz. So we can clearly say that the antenna is ultra-wide band in nature.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
D. Khedrouche ◽  
T. Bougoutaia ◽  
A. Hocini

AbstractIn this paper, a miniaturized microstrip patch antenna using a negative index metamaterial with modified split-ring resonator (SRR) unit cells is proposed for ultra-wideband (UWB) applications. The new design of metamaterial based microstrip patch antenna has been optimized to provide an improved bandwidth and multiple frequency operations. All the antenna performance parameters are presented in response-graphs. Also it is mentioned that the physical dimensions of the metamaterial based patch antenna are very small, which is convenient to modern communication. A 130 % bandwidth, covering the frequency band of 2.9–13.5 GHz, (for return loss less than or equal –10 dB) is achieved, which allow the antenna to operate in the Federal Communication Commission (FCC) band. In addition, the antenna has a good radiation pattern in the ultra-wide band spectrum, and it is nearly omnidirectional.


2017 ◽  
Vol 27 (13) ◽  
pp. 1730046 ◽  
Author(s):  
Hang Xu ◽  
Ying Li ◽  
Jianguo Zhang ◽  
Hong Han ◽  
Bing Zhang ◽  
...  

We propose and experimentally demonstrate an ultra-wideband (UWB) chaos life-detection radar. The proposed radar transmits a wideband chaotic-pulse-position modulation (CPPM) signal modulated by a single-tone sinusoidal wave. A narrow-band split ring sensor is used to collect the reflected sinusoidal wave, and a lock-in amplifier is utilized to identify frequencies of respiration and heartbeat by detecting the phase change of the sinusoidal echo signal. Meanwhile, human location is realized by correlating the CPPM echo signal with its delayed duplicate and combining the synthetic aperture technology. Experimental results demonstrate that the human target can be located accurately and his vital signs can be detected in a large dynamic range through a 20-cm-thick wall using our radar system. The down-range resolution is 15[Formula: see text]cm, benefiting from the 1-GHz bandwidth of the CPPM signal. The dynamic range for human location is 50[Formula: see text]dB, and the dynamic ranges for heartbeat and respiration detection respectively are 20[Formula: see text]dB and 60[Formula: see text]dB in our radar system. In addition, the bandwidth of the CPPM signal can be adjusted from 620[Formula: see text]MHz to 1.56[Formula: see text]GHz to adapt to different requirements.


2020 ◽  
Vol 10 (2) ◽  
pp. 504 ◽  
Author(s):  
Halgurd N. Awl ◽  
Yadgar I. Abdulkarim ◽  
Lianwen Deng ◽  
Mehmet Bakır ◽  
Fahmi F. Muhammadsharif ◽  
...  

In this work, the impact of substrate type and design dimensions on bow-tie microstrip antenna performance and bandwidth improvement is presented both numerically and experimentally at 4–8 GHz. The finite integration technique (FIT)-based high-frequency electromagnetic solver, CST Microwave Studio, was used for the simulation analysis. For this purpose, four bow-tie microstrip antennas were designed, fabricated, and measured upon using different materials and substrate thicknesses. Precise results were achieved and the simulated and experimental results showed a good agreement. The performance of each antenna was analyzed and the impact of changing material permittivity, antenna dimensions and substrate thicknesses on antenna performance were investigated and discussed. The measured results indicated that the slot bow-tie antenna, which is one of the novel aspects of this study, is well matched and a 2-GHz bandwidth [5–7 GHz] is obtained, which is about 50% bandwidth in comparison with the wideband applications [4–8 GHz]. The proposed structure is useful in ultra-wideband (UWB) applications. This study provides guidance in selecting material types and thicknesses for microstrip antennas based on desired applications.


Author(s):  
Tuanjai Archevapanich ◽  
Mayuree Lertwatechakul ◽  
Paitoon Rakluea ◽  
Noppin Anantrasirichai ◽  
Vanvisa Chutchavong

Sign in / Sign up

Export Citation Format

Share Document