SVM Ensemble-based Noise Detection Method for Image Denoising

Author(s):  
Xiaofen Jia ◽  
Chen Wang ◽  
Yongcun Guo ◽  
Baiting Zhao ◽  
Yourui Huang

Background: To preserve sharp edges and image details while removing noise, this paper presents a denoising method based on Support Vector Machine (SVM) ensemble for detecting noise. Methods: The proposed method ISVM can be divided into two stages: noise detection and noise recovery. In the first stage, local binary features and weighted difference features are extracted as input features vector of ISVM, and multiple sub-SVM classifiers are integrated to form the noise classification model of ISVM by iteratively updating the sample weight. The pixels are divided into noise points and signal points. In the noise recovery stage, according to the classification results of the previous stage, only the gray value of the noise point is replaced, and the replacement value is the weighted mean value with the reciprocal of the quadratic square of the distance as the weight. Results: Finally, the replacement value at the noise point and the original pixel value of the signal point are reconstructed to get the denoised image. Conclusion: The experiments demonstrate that ISVM can achieve a noise detection rate of up to 99.68%. ISVM is highly effective in the denoising task, produces a visually pleasing denoised image with clear edge information, and offers remarkable improvement compared to that of the BPDF and DAMF.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yulin Chen ◽  
Hailing Sun ◽  
Guofu Zhou ◽  
Bao Peng

With the rapid development of computer vision and robot technology, smart community robots based on artificial intelligence technology have been widely used in smart cities. Considering the process of feature extraction in fruit classification is very complicated. And manual feature extraction has low reliability and high randomness. Therefore, a method of residual filtering network (RFN) and support vector machine (SVM) for fruit classification is proposed in this paper. The classification of fruits includes two stages. In the first stage, RFN is used to extract features. The network consists of Gabor filter and residual block. In the second stage, SVM is used to classify fruit features extracted by RFN. In addition, a performance estimate for the training process carried out by the K -fold cross-validation method. The performance of this method is assessed with the accuracy, recall, F1 score, and precision. The accuracy of this method on the Fruits-360 dataset is 99.955%. The experimental results and comparative analyses with similar methods testify the efficacy of the proposed method over existing systems on fruit classification.


2013 ◽  
Vol 756-759 ◽  
pp. 4126-4132
Author(s):  
Chang You Wang ◽  
Zhao Long Gao

Aimed at the correlation between noise pixels and neighboring pixels, a new method based on the-support vector regression (-SVR) is proposed to remove the salt & pepper noise in corrupted images. The new algorithm first takes a decision whether the pixel under test is noise or not by comparing the block uniformity of the 3x3 window with one of the entire image, secondly adjusts adaptively the size of filtering window which is used to determine the training set according to the number of noise points in the window, thirdly determines the decision function that is used to predict the gray value of the noise pixels by means of training set, finally removes the noises in terms of the decision function based on-SVR. Experimental results clearly indicate that the proposed method has a better filtering effect than the existing methods such as standard mean filter, standard median filter, adaptive median filter by means of visual quality and quanti-tative measures.


2010 ◽  
Vol 97-101 ◽  
pp. 3631-3636 ◽  
Author(s):  
Xin He Liang ◽  
Jin Liang ◽  
Chen Guo

We present a scatter point cloud denoising method, which can reduce noise effectively, while preserving mesh features such as sharp edges and corners. The method consists of two stages. Firstly, noisy points normal are filtered iteratively; second, location noises of points are reduced. How to select proper denoising neighbors is a key problem for scatter point cloud denoising operation. The local shape factor which related to the surface feature is proposed. By using the factor, we achieved the shape adaptive angle threshold and adaptive optimal denoising neighbor. Normal space and location space is denoising using improved trilateral filter in adaptive angle threshold. A series of numerical experiment proved the new denoising algorithm in this paper achieved more detail feature and smoother surface.


2022 ◽  
Author(s):  
Meizhan Liu ◽  
Fengyu Zhou ◽  
JiaKai He ◽  
Ke Chen ◽  
Yang Zhao ◽  
...  

Abstract Aspect-level sentiment classification aims to integrating the context to predict the sentiment polarity of aspect-specific in a text, which has been quite useful and popular, e.g. opinion survey and products’ recommending in e-commerce. Many recent studies exploit a Long Short-Term Memory (LSTM) networks to perform aspect-level sentiment classification, but the limitation of long-term dependencies is not solved well, so that the semantic correlations between each two words of the text are ignored. In addition, traditional classification model adopts SoftMax function based on probability statistics as classifier, but ignores the words’ features in the semantic space. Support Vector Machine (SVM) can fully use the information of characteristics and it is appropriate to make classification in the high dimension space, however which just considers the maximum distance between different classes and ignores the similarities between different features of the same classes. To address these defects, we propose the two-stages novel architecture named Self Attention Networks and Adaptive SVM (SAN-ASVM) for aspect-level sentiment classification. In the first-stage, in order to overcome the long-term dependencies, Multi-Heads Self Attention (MHSA) mechanism is applied to extract the semantic relationships between each two words, furthermore 1-hop attention mechanism is designed to pay more attention on some important words related to aspect-specific. In the second-stage, ASVM is designed to substitute the SoftMax function to perform sentiment classification, which can effectively make multi-classifications in high dimensional space. Extensive experiments on SemEval2014, SemEval2016 and Twitter datasets are conducted, compared experiments prove that SAN-ASVM model can obtains better performance.


2020 ◽  
Vol 4 (2) ◽  
pp. 329-335
Author(s):  
Rusydi Umar ◽  
Imam Riadi ◽  
Purwono

The failure of most startups in Indonesia is caused by team performance that is not solid and competent. Programmers are an integral profession in a startup team. The development of social media can be used as a strategic tool for recruiting the best programmer candidates in a company. This strategic tool is in the form of an automatic classification system of social media posting from prospective programmers. The classification results are expected to be able to predict the performance patterns of each candidate with a predicate of good or bad performance. The classification method with the best accuracy needs to be chosen in order to get an effective strategic tool so that a comparison of several methods is needed. This study compares classification methods including the Support Vector Machines (SVM) algorithm, Random Forest (RF) and Stochastic Gradient Descent (SGD). The classification results show the percentage of accuracy with k = 10 cross validation for the SVM algorithm reaches 81.3%, RF at 74.4%, and SGD at 80.1% so that the SVM method is chosen as a model of programmer performance classification on social media activities.


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


2020 ◽  
Vol 15 ◽  
Author(s):  
Chun Qiu ◽  
Sai Li ◽  
Shenghui Yang ◽  
Lin Wang ◽  
Aihui Zeng ◽  
...  

Aim: To search the genes related to the mechanisms of the occurrence of glioma and to try to build a prediction model for glioblastomas. Background: The morbidity and mortality of glioblastomas are very high, which seriously endangers human health. At present, the goals of many investigations on gliomas are mainly to understand the cause and mechanism of these tumors at the molecular level and to explore clinical diagnosis and treatment methods. However, there is no effective early diagnosis method for this disease, and there are no effective prevention, diagnosis or treatment measures. Methods: First, the gene expression profiles derived from GEO were downloaded. Then, differentially expressed genes (DEGs) in the disease samples and the control samples were identified. After that, GO and KEGG enrichment analyses of DEGs were performed by DAVID. Furthermore, the correlation-based feature subset (CFS) method was applied to the selection of key DEGs. In addition, the classification model between the glioblastoma samples and the controls was built by an Support Vector Machine (SVM) based on selected key genes. Results and Discussion: Thirty-six DEGs, including 17 upregulated and 19 downregulated genes, were selected as the feature genes to build the classification model between the glioma samples and the control samples by the CFS method. The accuracy of the classification model by using a 10-fold cross-validation test and independent set test was 76.25% and 70.3%, respectively. In addition, PPP2R2B and CYBB can also be found in the top 5 hub genes screened by the protein– protein interaction (PPI) network. Conclusions: This study indicated that the CFS method is a useful tool to identify key genes in glioblastomas. In addition, we also predicted that genes such as PPP2R2B and CYBB might be potential biomarkers for the diagnosis of glioblastomas.


2020 ◽  
Vol 44 (8) ◽  
pp. 851-860
Author(s):  
Joy Eliaerts ◽  
Natalie Meert ◽  
Pierre Dardenne ◽  
Vincent Baeten ◽  
Juan-Antonio Fernandez Pierna ◽  
...  

Abstract Spectroscopic techniques combined with chemometrics are a promising tool for analysis of seized drug powders. In this study, the performance of three spectroscopic techniques [Mid-InfraRed (MIR), Raman and Near-InfraRed (NIR)] was compared. In total, 364 seized powders were analyzed and consisted of 276 cocaine powders (with concentrations ranging from 4 to 99 w%) and 88 powders without cocaine. A classification model (using Support Vector Machines [SVM] discriminant analysis) and a quantification model (using SVM regression) were constructed with each spectral dataset in order to discriminate cocaine powders from other powders and quantify cocaine in powders classified as cocaine positive. The performances of the models were compared with gas chromatography coupled with mass spectrometry (GC–MS) and gas chromatography with flame-ionization detection (GC–FID). Different evaluation criteria were used: number of false negatives (FNs), number of false positives (FPs), accuracy, root mean square error of cross-validation (RMSECV) and determination coefficients (R2). Ten colored powders were excluded from the classification data set due to fluorescence background observed in Raman spectra. For the classification, the best accuracy (99.7%) was obtained with MIR spectra. With Raman and NIR spectra, the accuracy was 99.5% and 98.9%, respectively. For the quantification, the best results were obtained with NIR spectra. The cocaine content was determined with a RMSECV of 3.79% and a R2 of 0.97. The performance of MIR and Raman to predict cocaine concentrations was lower than NIR, with RMSECV of 6.76% and 6.79%, respectively and both with a R2 of 0.90. The three spectroscopic techniques can be applied for both classification and quantification of cocaine, but some differences in performance were detected. The best classification was obtained with MIR spectra. For quantification, however, the RMSECV of MIR and Raman was twice as high in comparison with NIR. Spectroscopic techniques combined with chemometrics can reduce the workload for confirmation analysis (e.g., chromatography based) and therefore save time and resources.


Sign in / Sign up

Export Citation Format

Share Document