scholarly journals Nanofabrication of Iron-Cobalt (FeCo) Alloy by Sol-gel Method

2021 ◽  
Vol 1 (1) ◽  
pp. 111-114
Author(s):  
Majid Farahmandjou ◽  
Parastoo Khalili

Background and Introduction: Metal oxides (MOs) have been extensively used in a large range of engineering and medical applications. Methods: FeCo nanoparticles (NPs) were successfully synthesized by the solgel method in the presence of a powerful reducing agent-sodium borohydride (NaBH4). The structure, morphology, and optical properties of NPs were analyzed by X-ray diffraction (XRD), field effect scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR) at room temperature. Results: The XRD spectrum showed the body center cubic (BCC) structure of the samples after heat treatment at 500 °C. The SEM analysis exhibited that the particle size of as-synthesized and annealed samples was approximately 40 nm and 22 nm, respectively. Conclusion: The TEM investigations showed the rod-shaped sample of annealed NPs. The optical studies of the FTIR analysis revealed the starching bound of Fe-Co at the frequencies of 673 cm-1, 598 cm-1, and 478 cm-1.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Bamba Mahman ◽  
Mpho Enoch Sithole

A series of undoped mixed-phase BaAl2O4/CaAl4O7 (hereafter called BC) and doped BC: x% Eu3+ (0 < x ≤ 5.5) nanophosphors were successfully prepared by the citrate sol-gel technique. Their structure, morphology, and optical properties were studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD and SEM showed that all the BC:x% Eu3+ samples consisted of the crystalline structure of the mixed phases of both the BaAl2O4 and CaAl4O7 materials. The structure resembles more that of the BaAl2O4 than the CaAl4O7 phase. The TEM results suggest that the crystallite sizes are in the nanometer scale with rod-like particles. PL results showed multiple emission peaks located at 436, 590, 616, 656, and 703 nm, which were assigned to the intrinsic defects within the BC matrix, 5D0 ⟶ 7F1, 5D0 ⟶ 7F2, 5D0 ⟶ 7F3, and 5D0 ⟶ 7F4 transitions of Eu3+, respectively. The decay curves evidently showed that the nanophosphors have persistent luminescence. The Commission Internationale de l’Eclairage (CIE) analysis revealed that doping has tuned the emission colour from blue to orange-red. The results indicate that the Eu3+-doped samples can potentially be used in the orange/red-emitting phosphors.


2019 ◽  
Vol 25 (6) ◽  
pp. 1466-1470 ◽  
Author(s):  
Rituparna Chatterjee ◽  
Subhajit Saha ◽  
Karamjyoti Panigrahi ◽  
Uttam Kumar Ghorai ◽  
Gopes Chandra Das ◽  
...  

AbstractIn this work, strongly blue emitting Ce3+-activated BaAl2O4 nanophosphors were successfully synthesized by a sol–gel technique. The crystal structure, morphology, and microstructure of the nanophosphors have been studied by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The photoluminescence spectra show the impact of concentration variation of Ce3+ on the photoluminescence emission of the phosphor. These nanophosphors display intense blue emission peaking at 422 nm generated by the Ce3+ 5d → 4f transition under 350 nm excitation. Our results reveal that this nanophosphor has the capability to take part in the emergent domain of solid-state lighting and field-emission display devices.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 456
Author(s):  
Fahad A. Alharthi ◽  
Hamdah S. Alanazi ◽  
Amjad Abdullah Alsyahi ◽  
Naushad Ahmad

This study demonstrated the hydrothermal synthesis of bimetallic nickel-cobalt tungstate nanostructures, Ni-CoWO4 (NCW-NPs), and their phase structure, morphology, porosity, and optical properties were examined using X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), high resolution Transmission electron microscopy (HR-TEM), Brunauer-Emmett-Teller (BET) and Raman instruments. It was found that as-calcined NCW-NPs have a monoclinic phase with crystal size ~50–60 nm and is mesoporous. It possessed smooth, spherical, and cubic shape microstructures with defined fringe distance (~0.342 nm). The photocatalytic degradation of methylene blue (MB) and rose bengal (RB) dye in the presence of NCW-NPs was evaluated, and about 49.85% of MB in 150 min and 92.28% of RB in 90 min degraded under visible light. In addition, based on the scavenger’s study, the mechanism for photocatalytic reactions is proposed.


2010 ◽  
Vol 148-149 ◽  
pp. 893-896 ◽  
Author(s):  
Ze Yang Zhang ◽  
Xiang Xuan Liu ◽  
You Peng Wu

M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were successfully prepared by the sol-gel method and solution phase reduction method, respectively. The crystalline and morphology of particles were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The composite coatings with SrFe12O19 ferrites and FeNi3 nanoplatelets in polyvinylchloride matrix were prepared. The microwave absorption properties of these coatings were investigated in 2-18GHz frequency range. The results showed that the M-typical SrFe12O19 ferrites and FeNi3 nanoplatelets were obtained and they presented irregular sheet shapes. With the increase of the coating thickness, the absorbing peak value moves to the lower frequency. The absorbing peak values of the wave increase along with the increasing of the content of FeNi3 nanoplatelets filling fraction. When 40% SrFe12O19 ferrites is doped with 20% mass fraction FeNi3 nanoplatelets to prepare composite with 1.5mm thickness, the maximum reflection loss is -24.8 dB at 7.9GHz and the -10 dB bandwidth reaches 3.2GHz.


2018 ◽  
Vol 41 (3-4) ◽  
pp. 53-62 ◽  
Author(s):  
Behnaz Lahijani ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

Abstract In this work, the PbFe12O19 nanoparticles were prepared by the simple and optimized precipitation method with different organic surfactants and capping agents. In the next step, the TiO2 nanoparticles were synthesized using the sol-gel method. At the final step, the PbFe12O19-TiO2 nanocomposites were prepared via the sol-gel method. The effect of the precipitating agent on the morphology and particle size of the products was investigated. The prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The results obtained by the vibrating sample magnetometer show the magnetic properties of the ferrite nanostructures. The photocatalytic effect of the PbFe12O19-TiO2 nanocomposite on the elimination of the azo dyes (acid black, acid violet and acid blue) under ultraviolet light irradiation was evaluated. The results indicate that the prepared nanocomposites have acceptable magnetic and photocatalytic performance.


2018 ◽  
Vol 281 ◽  
pp. 859-864
Author(s):  
Yan Xing ◽  
Meng Fei Zhang ◽  
Tian Jun Li ◽  
Wei Pan

La2NiO4+σ nanofibers exhibiting typical Ruddlesden–Popper structure (K2NiO4) were fabricated by a facile electrospinning method. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to analyze the structure, morphology and crystal process of the La2NiO4+σ nanofibers. For electrical properties measurement, uniaxially aligned nanofibers were directly collected and assembled into electrode. In our research, La2NiO4+σ phase forms above 873K with no impurity phase emerges during the thermal treatments. The nanofibers are smooth and uniform throughout the entire length and the grain is growing as calcination temperature increases. Furthmore, the La2NiO4+σ nanofibers own high mixed conductivity at 773K, laying good foundation for intermediate temperature solid oxide fuel cells application.


2011 ◽  
Vol 295-297 ◽  
pp. 869-872
Author(s):  
Qing Shan Li ◽  
Xin Wang ◽  
Jun Liu ◽  
Guang Zhong Xing

Six-ring Rock is widely used as containers of water and additives to produce health care products. In this paper, the composition and microstructure of Six-ring Rock have been investigated by using scanning electron microscopy, energy dispersive spectrometer, transmission electron microscopy, x-ray diffraction and other technologies. Results show that Six-ring Rock is composed of CaMg(CO3)2, SiO2 and KAlSi3O8. Fe atoms exist in CaMg(CO3)2 by replacing Mg atoms. Six-ring Rock shows nano-size lamellar and acerose microstructures on the surface, and nano-size monocrystals in the body. Six-ring Rock is a natural nano structure mineral.


2019 ◽  
Vol 113 (1) ◽  
pp. 511-517
Author(s):  
Masumeh Ziaee ◽  
Asgar Babamir-Satehi

Abstract Nanostructured silica can be used as a carrier of pesticides to enhance stability and controlled release of agrochemicals with an effective concentration on target pests. Silica nanoparticles (SNPs) were synthesized by sol–gel process and employed as a carrier of three different insecticides including deltamethrin, pyriproxyfen, and chlorpyrifos. The SNPs were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis and the insecticides-loaded in SNPs were characterized by transmission electron microscopy (TEM). The toxicity of insecticides alone and loaded in SNPs was evaluated against small and large larvae of Trogoderma granarium Everts on concrete surfaces. The immediate mortality was counted after 1, 3, and 7 d of exposure, and then surviving individuals were transferred to untreated surfaces for seven more days, with delayed mortality was recorded. Small larvae were more susceptible than large ones on all insecticide treatments. In addition, insecticides loaded in silica nanoparticles were more effective when compared with application of the insecticides alone. For immediate mortality, deltamethrin loaded in SNPs was the most efficient treatment causing 70.5% mortality on small and 55.5% mortality on large larvae after 7 d of exposure to the highest concentration. Pyriproxyfen loaded in SNPs caused low immediate mortality, but the mortality increased in delayed count indicated that the insecticide could control the larvae even after they have been removed from treated surfaces. It can be concluded that loading insecticides in SNPs could significantly increase their insecticidal efficiency, but this increase was compound-dependent.


1997 ◽  
Vol 12 (6) ◽  
pp. 1441-1444 ◽  
Author(s):  
L. Armelao ◽  
A. Armigliato ◽  
R. Bozio ◽  
P. Colombo

The microstructure of Fe2O3 sol-gel thin films, obtained from Fe(OCH2CH3)3, was investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. Samples were nanocrystalline from 400 °C to 1000 °C, and the crystallized phase was haematite. In the coatings, the α–Fe2O3 clusters were dispersed as single particles in a network of amorphous ferric oxide.


Sign in / Sign up

Export Citation Format

Share Document