Evaluation of strength of concrete on different initial exposure condition

2020 ◽  
Vol 13 ◽  
Author(s):  
Sri Ram Krishna Mishra ◽  
Pradeep Kumar Ghosh ◽  
Manoj Kulshreshtha

Background: The previous studies have focused curing effect of mainly on high strength concrete, where strict supervision is maintained. This study is based upon general purpose concreting work for commercial and residential construction in absence of skilled manpower and supervision. Objective: The objective of this study is to establish a thumb rule to provide 7 days initial curing for maintaining quality for unsupervised concreting irrelevant to type of cement and grading. Methods: In this study concrete samples made with locally available commercial cements were cured for various initial exposure. Results: The results shows that concrete cured after a gap of 4 days from the time of de-moulding have given lowest strength as compared to concrete cured in standard practices i.e. where proper curing protocol had been followed. Conclusion: Initial curing is most important aspect of gaining desired strength. The findings after this study shows that curing affects the strength of concrete in variable grading. Initial curing has great importance for concrete with all types of Portland cement. Concrete with supplementary cementitious materials gives lowest strength initially but results higher strength after 28 days as compared to Portland cement.

1994 ◽  
Vol 370 ◽  
Author(s):  
David Bonen ◽  
Mehmet A. Tasdemir ◽  
Shondeepl. Sarkar

AbstractThe use of cementitious materials dates back to the beginning of the Epipaleolithic period. Examples for ancient cementitious materials from Israel, Egypt, Turkey, and Italy are numerous.Prior to Aspdin's patent of portland cement at the first half of the 19th century, cementitious materials were composed of earth, mixture of earth and limestone, calcium sulfates, and slaked lime with and without pozzolans. The latter comprises pozzolanic materials from volcanic and sedimentary origin, crushed burnt clay brick, and dust brick. Frequently, organic fibers were incorporated for reinforcement. This paper describes the evolution of the cementitious materials through time and highlights the durability of ancient cementitious materials as compares to that of portland cement concrete.Although modem concrete is characterized by its high strength and low permeability, it often faces durability problems. In turn, ancient concretes examined exhibit low strength but have proved to be durable materials. Microstructural examination reveals that the groundmass of the latter has been carbonated and is highly porous. Nevertheless, no specific cracking pattern could be observed. The outstanding performance of ancient concrete structures implies that thermodynamic stability rather that mechanical strength is a key point for a long-term durability.


2021 ◽  
Author(s):  
Gilson Lomboy ◽  
Douglas Cleary ◽  
Seth Wagner ◽  
Yusef Mehta ◽  
Danielle Kennedy ◽  
...  

Dwindling supplies of natural concrete aggregates, the cost of landfilling construction waste, and interest in sustainable design have increased the demand for recycled concrete aggregates (RCA) in new portland cement concrete mixtures. RCA repurposes waste material to provide useful ingredients for new construction applications. However, RCA can reduce the performance of the concrete. This study investigated the effectiveness of ternary blended binders, mixtures containing portland cement and two different supplementary cementitious materials, at mitigating performance losses of concrete mixtures with RCA materials. Concrete mixtures with different ternary binder combinations were batched with four recycled concrete aggregate materials. For the materials used, the study found that a blend of portland cement, Class C fly ash, and blast furnace slag produced the highest strength of ternary binder. At 50% replacement of virgin aggregates and ternary blended binder, some specimens showed comparable mechanical performance to a control mix of only portland cement as a binder and no RCA substitution. This study demonstrates that even at 50% RCA replacement, using the appropriate ternary binder can create a concrete mixture that performs similarly to a plain portland cement concrete without RCA, with the added benefit of being environmentally beneficial.


2016 ◽  
Vol 711 ◽  
pp. 511-518 ◽  
Author(s):  
Vivek Bindiganavile ◽  
Jose R.A. Goncalves ◽  
Yaman Boluk

Portland cement concrete (PCC) is now second only to potable water in per capita consumption. And notwithstanding its numerous benefits, Portland cement itself is responsible for between 4 to 5% of the world’s manmade greenhouse gas emissions. In this context, geopolymer concrete is a promising alternative, wherein the Portland cement binder is replaced entirely by supplementary cementitious materials triggered by alkaline activators. Relatively little is known on the fracture response of this system, especially when exposed to extreme temperatures. The study reported here focused on the crack growth response of such a system prepared with Class F fly ash and reinforced with steel and polymeric fibres up to 1% volume fraction. The geopolymerization was effected with a blend of sodium hydroxide and sodium silicate to achieve a compressive strength of 30 MPa at 28 days. The resulting geopolymer concrete was subjected to temperatures between-30 oC to 300 oC, sustained for 2 hours. A fibre blend of steel to polypropylene in the mass ratio of 4:1 was incorporated. Based on the results, four different stages for fracture behaviour were identified with superior fibre efficiency seen at sub-zero temperatures.


2020 ◽  
Vol 14 (1) ◽  
pp. 6443-6451 ◽  
Author(s):  
Chow Wee Kang ◽  
Cheah Chee Ban ◽  
Oo Chuan Wei ◽  
Part Wei Ken ◽  
Leow Khang Heng

High carbon emissions of manufactured Portland cement in the concrete industry have incurred several interests in reducing the use of Portland cement by partially replacing it with supplementary cementitious materials. Most of which, are by-products from other manufacturing industries. Hence, the main purpose of this study is to investigate the effects of different combinations of ternary blended mortars incorporating supplementary cementitious materials such as Ground Granulated Blast Furnace Slag (GGBS) and Densified Silica Fume (DSF). In this study, mortars were prepared with 100% quarry dust and GGBS was replaced with DSF at 2% step increments up to 16% at a w/b ratio of 0.24. At the same time OPC content was fixed at 50%. The compressive and flexural strength, drying shrinkage, and porosity of mortars were all tested. The results indicated that the increasing DSF content increases; GGBS reduces the superplasticizer dosage for the desired workability of the mortar. The utilization GGBS and DSF has improved the performances ternary blended mortar incorporating quarry dust as a fine aggregate in terms of mechanical strength, drying shrinkage and total porosity tested. The high strength ternary blended mortar incorporating GGBS and DSF exhibited optimum mechanical and durability performance at the OPC:GGBS:DSF ratio of 50:38:12.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2291
Author(s):  
Alessandro P. Fantilli ◽  
Daria Jóźwiak-Niedźwiedzka

The environmental impact of the Portland cement production and the large use of cement-based building materials is a growing problem [...]


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3467
Author(s):  
Ankit Kothari ◽  
Karin Habermehl-Cwirzen ◽  
Hans Hedlund ◽  
Andrzej Cwirzen

Most of the currently used concretes are based on ordinary Portland cement (OPC) which results in a high carbon dioxide footprint and thus has a negative environmental impact. Replacing OPCs, partially or fully by ecological binders, i.e., supplementary cementitious materials (SCMs) or alternative binders, aims to decrease the carbon dioxide footprint. Both solutions introduced a number of technological problems, including their performance, when exposed to low, subfreezing temperatures during casting operations and the hardening stage. This review indicates that the present knowledge enables the production of OPC-based concretes at temperatures as low as −10 °C, without the need of any additional measures such as, e.g., heating. Conversely, composite cements containing SCMs or alkali-activated binders (AACs) showed mixed performances, ranging from inferior to superior in comparison with OPC. Most concretes based on composite cements require pre/post heat curing or only a short exposure to sub-zero temperatures. At the same time, certain alkali-activated systems performed very well even at −20 °C without the need for additional curing. Chemical admixtures developed for OPC do not always perform well in other binder systems. This review showed that there is only a limited knowledge on how chemical admixtures work in ecological concretes at low temperatures and how to accelerate the hydration rate of composite cements containing high amounts of SCMs or AACs, when these are cured at subfreezing temperatures.


2021 ◽  
Vol 1036 ◽  
pp. 240-246
Author(s):  
Jin Tang ◽  
Su Hua Ma ◽  
Wei Feng Li ◽  
Hui Yang ◽  
Xiao Dong Shen

The use of calcined clay and limestone as supplementary cementitious materials, can have a certain influence on the hydration of Portland cement. This paper reviewed the influence of limestone and calcined clay and the mixture of limestone and calcined clay on the hydration of cement. Both limestone and calcined clay accelerate the hydration reaction in the early hydration age and enhance the properties of cement. Limestone reacts with C3A to form carboaluminate, which indirectly stabilized the presence of ettringite, while calcined clay consumed portlandite to form C-(A)-S-H gel, additional hydration products promote the densification of pore structure and increase the mechanical properties. The synergistic effect of calcined clay and limestone stabilize the existence of ettringite and stimulate the further formation of carboaluminate, as well as the C-(A)-S-H gel, contributed to a dense microstructure.


Author(s):  
O. R. Ogirigbo ◽  
J. O. Ukpata ◽  
I. Inerhunwa

Ground Granulated Blast Furnace Slag (GGBS) is a type of Supplementary Cementitious Material (SCM) that is currently being used extensively in the global construction industry. SCMs are cheaper than Portland cement, help to improve certain properties of concrete and also help to reduce the environmental footprint associated with the production of Portland cement. GGBS is readily available in most parts of the world as a waste product from iron and steel production. However, its use as a SCM in some countries has not been fully maximized. This is primarily because of lack of documented studies on the properties of GGBS that influences its suitability as a SCM, especially in tropical environments. This paper reviewed the use of GGBS as a SCM for the partial replacement of Portland cement, with particular emphasis on its potential use in tropical warm environments such as Nigeria and other similar countries.


Sign in / Sign up

Export Citation Format

Share Document