Heat Transfer Mechanisms by Jet Impingement on a Convex Surface: A Review

2021 ◽  
Vol 01 ◽  
Author(s):  
T. Kim ◽  
D. Barratt ◽  
M.D. Atkins ◽  
S.W. Schekman ◽  
T.J. Lu

: Jet impingement in engineering applications is used because of the capacity to transport high levels of heat flux from a surface of interest for cooling purposes. Thus far, based on a vast database of experiments and numerical simulations, several correlations have been established for local and average heat transfer on target surfaces as functions of relevant fluid properties and geometric parameters. In addition to these correlations, significant efforts have been made to gain fundamental understanding of jet impingement in varying configurations. However, the physics governing heat transfer by jet impingement are conjectured, even unclear. Thus, this article collates and discusses recent advances in fluidic mechanisms underlying the heat transfer by submerged jet impingement on a convex surface. The fluid properties developed on a convex surface due to jet impingement with varied characteristics, including jet-to-target surface spacing, interchange their primary roles in heat transfer from/to a convex surface. Particularly, conjectures associated with relevant fluidic mechanisms that have been widely accepted, are confirmed, clarified, and corrected.

Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Abstract Nanoliquid impingement heat transfer with phase change material (PCM) installed radial system is considered. Study is performed by using finite element method for various values of Reynolds numbers (100 ≤ Re ≤ 300), height of PCM (0.25H ≤ hpcm = 0.7H ≤ 0.75H) and plate spacing (0.15H ≤ hpcm = 0.7H ≤ 0.40H). Different configurations with using water, nanoliquid and nanoliquid+PCM are compared in terms of heat transfer improvement. Thermal performance is improved by using PCM while best performance is achieved with nanoliquid and PCM installed configuration. At Re=100 and Re=300, heat transfer improvements of 26% and 25.5% are achieved with nanoliquid+PCM system as compared to water without PCM. Height of the PCM layer also influences the heat transfer dynamic behavior while there is 12.6% variation in the spatial average heat transfer of the target surface with the lowest and highest PCM height while discharging time increases by about 76.5%. As the spacing between the plates decreases, average heat transfer rises and there is 38% variation.


Author(s):  
Preeti Mani ◽  
Ruander Cardenas ◽  
Vinod Narayanan

Submerged jet impingement boiling has the potential to enhance pool boiling heat transfer rates. In most practical situations, the surface could consist of multiple heat sources that dissipate heat at different rates resulting in a surface heat flux that is non-uniform. This paper discusses the effect of submerged jet impingement on the wall temperature characteristics and heat transfer for a non-uniform heat flux. A mini-jet is caused to impinge on a polished silicon surface from a nozzle having an inner diameter of 1.16 mm. A 25.4 mm diameter thin-film circular serpentine heater, deposited on the bottom of the silicon wafer, is used to heat the surface. Deionized degassed water is used as the working fluid and the jet and pool are subcooled by 20°C. Voltage drop between sensors leads drawn from the serpentine heater are used to identify boiling events. Heater surface temperatures are determined using infrared thermography. High-speed movies of the boiling front are recorded and used to interpret the surface temperature contours. Local heat transfer coefficients indicate significant enhancement upto radial locations of 2.6 jet diameters for a Reynolds number of 2580 and upto 6 jet diameters for a Reynolds number of 5161.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012024
Author(s):  
V.V. Lemanov ◽  
M.A. Pakhomov ◽  
V.I. Terekhov ◽  
Z. Travnicek

Abstract An unsteady local heat transfer in an air synthetic non-steady-state jet impingement onto a flat plate with a variation of the Reynolds number, nozzle-to-plate distance and pulses frequency is experimentally and numerically studied. Measurements of the averaged and pulsating heat transfer at the stagnation point are conducted using a heat flux sensor. The axisymmetric URANS method and the Reynolds stress model are used for numerical simulations. For local values of heat transfer, zones with the maximum instantaneous value of heat flux and heat transfer coefficient are identified. The heat transfer increases at relatively low nozzle-to-plate distances (H/d ≤ 4). The heat transfer decreases at high distance from the orifice and target surface. An increase in the Reynolds number causes reduction of heat transfer.


Author(s):  
Shou-Shing Hsieh ◽  
Jung-Tai Huang

An experimental study was performed in a confined circular single jet impingement. The effect of jet Reynolds number, nozzle-to-plate spacing and heat flux levels on heat transfer characteristics of the heated target surface was examined and presented. Flow visualization was made to broaden our fundamental understanding of the physical process of the type of flow. Transition and turbulent regimes are identified. The local heat transfer coefficient along the surface is measured and correlation of the stagnation point Nusselt number are presented and discussed.


2015 ◽  
Vol 766-767 ◽  
pp. 1148-1152
Author(s):  
M. Karthigairajan ◽  
S. Mohanamurugan ◽  
K. Umanath

An experiment sturdy has been carried out for jet impingement cooling on the spherically convex surface is the development of mechanism. The effect of curvature, Space between jet exit and target surface, and Reynolds number on heat transfer is investigated for around air jet on hemispherical surface. The flow at the jet exit has fully developed velocity profile. A uniform heat flux boundary is created on the heated surface. The experiments are performed for 5000<Re<25000, 2<L/d<10, and jet diameters ranging from 1.3, 2.1, 3.4, 4.0 and 5.2 cm. In the mean time effect of curvature on local heat transfer is negligible at the wall jet region corresponding to r/d>0.5. From the experimental results the variation of the D/d ratio with local Nusselt number (Nust) for various Reynolds numbers and various L/d ratios are plotted. The results show that Nust increase with increase in curvature and the effect of the curvature will high at high Reynolds number. i.e. Nust at Re=25000 is 25% higher than at Re= 5000 This may be attributed to an increase in curvature increases acceleration, & size of three dimensional counter rotating vortices at stagnation point and the increment of Reynolds number increases the jet momentum, and also enhances the vortices creation. Nust is peaking in the L/d ratio of 6 because of high turbulence intensity as this distance.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4327
Author(s):  
Min-Seob Shin ◽  
Santhosh Senguttuvan ◽  
Sung-Min Kim

The present study experimentally and numerically investigates the effect of channel height on the flow and heat transfer characteristics of a channel impingement cooling configuration for various jet Reynolds numbers in the range of 2000–8600. A single array consisting of eleven jets with 0.8 mm diameter injects water into the channel with 2 mm width at four different channel heights (3, 4, 5, and 6 mm). The average heat transfer coefficients at the target surface are measured by maintaining a temperature difference between the jet exit and the target surface in the range of 15–17 °C for each channel height. The experimental results show the average heat transfer coefficient at the target surface increases with the jet Reynolds number and decreases with the channel height. An average Nusselt number correlation is developed based on 85 experimentally measured data points with a mean absolute error of less than 4.31%. The numerical simulation accurately predicts the overall heat transfer rate within 10% error. The numerical results are analyzed to investigate the flow structure and its effect on the local heat transfer characteristics. The present study advances the primary understanding of the flow and heat transfer characteristics of the channel impingement cooling configuration with liquid jets.


Author(s):  
Muhsincan Sesen ◽  
Ali Kosar ◽  
Ebru Demir ◽  
Evrim Kurtoglu ◽  
Nazli Kaplan ◽  
...  

In this paper, the results of a series of heat transfer experiments conducted on a compact electronics cooling device based on single phase jet impingement techniques are reported. Deionized-water is propelled into four microchannels of inner diameter 685 μm which are used as nozzles and located at a nozzle to surface distance of 2.5mm. The generated jet impingement is targeted through these channels towards the surface of a nanostructured plate. This plate of size 20mmx20mm consisted of ∼600 nm long copper nanorod arrays with an average nanorod diameter of ∼150 nm, which were integrated on top of a silicon wafer substrate coated with a copper thin film layer (i.e. Cu-nanorod/Cu-film/Silicon-wafer). Heat removal characteristics induced through jet impingement are investigated using the nanostructured plate and compared to results obtained from a flat plate of copper thin film coated on silicon wafer surface. Enhancement in heat transfer up to 15% using the nanostructured plate has been reported in this paper. Heat generated by small scale electronic devices is simulated using a thin film heater placed on an aluminum base. Surface temperatures are recorded by a data acquisition system with the thermocouples integrated on the surface at various locations. Constant heat flux provided by the film heater is delivered to the nanostructured plate placed on top of the base. Volumetric flow rate and heat flux values were varied in order to better characterize the potential enhancement in heat transfer by nanostructured surfaces.


1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


Sign in / Sign up

Export Citation Format

Share Document