scholarly journals Demonstrating Bonds and Forces: From Nitrogen to Nanotubes

In this exercise students will study chemical forces such as covalent bonds, ionic bonds, ion-dipole interactions and hydrogen bonds.

2021 ◽  
Vol 871 ◽  
pp. 254-263
Author(s):  
Zhan Cheng ◽  
Guan Xing Zhang ◽  
Wei Min Long ◽  
Svitlana Maksymova ◽  
Jian Xiu Liu

The first-principles calculations by CASTEP program based on the density functional theory is applied to calculate the cohesive energy, enthalpy of formation, elastic constant, density of states and Mulliken population of Ag3Sn、AgZn3 and Ag5Zn8. Furthermore, the elastic properties, bonding characteristics, and intrinsic connections of different phases are investigated. The results show that Ag3Sn、AgZn3 and Ag5Zn8 have stability structural, plasticity characteristics and different degrees of elastic anisotropy; Ag3Sn is the most stable structural, has the strongest alloying ability and the best plasticity. AgZn3 is the most unstable structure, has the worst plasticity; The strength of Ag5Zn8 is strongest, AgZn3 has the weakest strength, the largest shear resistance, and the highest hardness. Ag5Zn8 has the maximum Anisotropy index and Ag3Sn has the minimum Anisotropy index. Ag3Sn、AgZn3 and Ag5Zn8 are all have covalent bonds and ionic bonds, the ionic bonds decrease in the order Ag3Sn>Ag5Zn8>AgZn3 and covalent bonds decreases in the order Ag5Zn8>Ag3Sn>AgZn3.


2020 ◽  
Vol 8 (15) ◽  
pp. 5280-5292 ◽  
Author(s):  
Yan Yang ◽  
Zushan Ye ◽  
Xiaoxuan Liu ◽  
Jiahui Su

Healable waterborne polyurethanes synergistically cross-linked by dynamic hydrogen bonds and photo-curable double bonds for composite conductors.


2014 ◽  
Vol 87 (3) ◽  
pp. 459-470 ◽  
Author(s):  
Lin Li ◽  
Jin Kuk Kim

ABSTRACT Thermoreversible cross-linking polymers are designed based on reversible cross-linking bonds. These bonds are able to reversibly dissociate and associate upon the input of external energy, such as heat or light. Reprocessibility is possible for this kind of material. The objective was to thermoreversibly cross-link maleic anhydride grafted chlorobutyl rubber (MAH-g-CIIR) via a reaction with octadecylamine, with an excess to obtain amide-salts, which form both hydrogen bonds and ionic interactions. X-ray diffraction experiments showed the presence of microphase-separated aggregates that acted as physical cross-links for both the MAH-g-CIIR precursor and amide-salts. The tensile properties were improved by converting MAH-g-CIIR to amide-salts, because of the combination of hydrogen bonding and ionic interactions. The cross-linked materials could be repeatedly compression molded at 155 °C into homogeneous films. The differential scanning calorimetry curves and Fourier transform infrared spectra indicate that hydrogen bonds are of a thermoreversible nature, but the recovery of ionic bonds is impossible. After treatment with heating-cooling for up to three cycles, the tensile strength of the thermoreversible cross-linking CIIR was greatly reduced. The gradual reduction in the effectiveness of the ionic-hydrogen bonds is the major contribution to the reprocessibility of these materials.


2006 ◽  
Vol 20 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Jarosław Spychała

In the light of the usefulness of amidines in medicinal chemistry, this paper considers the effects on biological properties and chemical reactivities of organic molecules affected by intramolecular interactions. The study of chemical shifts has been an important source of information on the electronic structure of amidine salts and their ability to form non-covalent bonds with nucleic acids. The NMR and IR results demonstrate that hydrogen bonds are a force for promoting chemical reactions. The thymine O2 carbonyl oxygen in a close proximity to the amidinium cation does interact with the appropriately spaced amidinium NH donor moieties. The1H-15N 2D NMR (GHSQC and GHMBC) spectra with natural isotopic abundance of15N fully confirm the intramolecular character of the bonds. A rule able to estimate the relative strength of the new multifurcated hydrogen bonds is given. The appearance of the ΔδNHchemical shift differences near zero is due to the strong intramolecular interactions. The strength of the H-bond donation by acetamidines is reflected in the N–H dissociation/recombination process (positive charge shift has been invoked to explain other effects on benzamidines). The temperature dependence of chemical shift for the amidine NH protons in dimethyl sulfoxide solutions is herein discussed.


2012 ◽  
Vol 714 ◽  
pp. 271-276 ◽  
Author(s):  
Martyna Pingot ◽  
Tomasz Pingot ◽  
Magdalena Maciejewska ◽  
Marian Zaborski

This paper deals with blends of ethylene-octene rubber (POE) with nanostructured metal oxides: magnesium oxide (MgO), calcium oxide (CaO), zinc oxide (ZnO) and unsaturated acids: itaconic acid (IA), sorbic acid (SA) and crotonic acid (CA), as co-agents. Dicumyl peroxide (DCP) was used as a vulcanizing agent. Elastomer composites were prepared in Brabender measuring mixer N50. Rheometric properties of rubber mixes and crosslink density of vulcanizates were measured. Mechanical properties of the samples were also investigated. Dispersion degree of coagents in elastomer matrix was studied by SEM images. Cross-link density analysis revealed that POE vulcanizates contained both ionic bonds and covalent bonds. The results showed that the nanostructured metal oxides and unsaturated acids used as co-agents can greatly improve the modulus at 100% of elongation and tensile strength of the vulcanizates.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3161
Author(s):  
Chloé Larrue ◽  
Véronique Bounor-Legaré ◽  
Philippe Cassagnau

The objective of this study was to replace elastomer crosslinking based on chemical covalent bonds by reversible systems under processing. One way is based on ionic bonds creation, which allows a physical crosslinking while keeping the process reversibility. However, due to the weak elasticity recovery of such a physical network after a long period of compression, the combination of both physical and chemical networks was studied. In that frame, an ethylene-propylene-diene terpolymer grafted with maleic anhydride (EPDM-g-MA) was crosslinked with metal salts and/or dicumyl peroxide (DCP). Thus, the influence of these two types of crosslinking networks and their combination were studied in detail in terms of compression set. The second part of this work was focused on the influence of different metallic salts (KOH, ZnAc2) and the sensitivity to the water of the physical crosslinking network. Finally, the combination of ionic and covalent network allowed combining the processability and better mechanical properties in terms of recovery elasticity. KAc proved to be the best ionic candidate to avoid water degradation of the ionic network and then to preserve the elasticity recovery properties under aging.


2020 ◽  
Vol 213 ◽  
pp. 01019
Author(s):  
Fei Liu ◽  
Shan Cong ◽  
Long Hao

The total energy, binding characteristics, density of states, charge distribution and differential charge density of γ-Fe(C)-M crystal cells formed by solid solution of Zr, Nb and V in γ-Fe(C) were calculated by using the first-principles method. Thus, the mechanism of Zr, Nb, and V with γ-Fe(C) was investigated in this paper. The results show that Zr, Nb and V all preferentially replaced the Fe atoms which are at the top angle in γ-Fe(C). Crystal cell reaches its highest stability after V solid solution. Nb reaches after it, and Zr is relatively weak. In the γ-Fe(C)-Zr cell, Fe-Zr covalent bond and Zr-C ionic bond are the main chemical bonds. In the γ-Fe(C)-Nb and γ-Fe(C)-V cells, Fe-Nb and Fe-V covalent bonds are the main chemical bonds with a number of Nb-C and V-C ionic bonds. After solid solution, the electron cloud density around C atom changed little, while Fe atom changed obviously. The orbital electrons around Fe atoms in γFe(C)-V has maximal distribution, which means that the electrons delocalized most and most of the electrons are bonding. It is the main factor for the increase in the binding energy of crystal cell. The effects of Zr, Nb, V solution on austenitic stability are investigated by studying the influence of alloy element on γFe(C) electronic structure.


Leonardo ◽  
2021 ◽  
pp. 1-11
Author(s):  
J. David Van Horn ◽  
Dayu Wang

Abstract We reconsider macroscopic structure, including tensegrity structures, as ensembles of compression (C; repulsion) and tension (T; attraction) forces, and fit them to a triangular spectrum. Then, derivative structural analogy is made to the three classes of molecular bonding, as a bridge to microscopic structure. Basic molecular interactions and their “C/T” analogues are ionic bonds (with continuous compression/discontinuous tension), or metallic bonds (with both continuous tension and compression), or covalent bonds (with discontinuous compression/continuous tension—a tensegrity structure). The construction of tensegrity sculptures of particle interactions and the covalent molecules dihydrogen, methane, diborane, and benzene using tension and compression elements follows. We derived and utilized two properties in this analysis: 1) a “simplest tensegrity” subunit structure and 2) interpenetrating, discontinuous compressive members—tension members may also be discontinuous. This approach provides new artistic models for molecules and materials, and may inform future artistic, architectural, engineering and scientific endeavors.


Sign in / Sign up

Export Citation Format

Share Document