1996 ◽  
Vol 40 ◽  
pp. 619-624
Author(s):  
Nobuyoshi AKASHI ◽  
Makoto ISHIKAWA ◽  
Takashi SAITOU

Author(s):  
Feixi Zhang ◽  
Peng Wu ◽  
Dazhuan Wu

With the increasing demand of small-flow and high-head pumps, vortex pump, which can be used in industry, agriculture, medical and aerospace etc., has become more and more popular as low specific pump. However, the pressure fluctuation of fluid in the vortex pump would cause flow noise and vibration which may result in damage to the equipment. Clearly, it is important to reduce the fluctuation causing by fluid flow as much as possible. This study examined and discussed the law of pressure fluctuation in a micro vortex pump by the method of numerical simulation. In addition, a random distribution method was applied to design two new impellers with different blade spacing. Moreover, the influence on pressure fluctuation of different blade positions was predicted by theoretical analysis and CFD analysis. The results show that the blade passing frequency is dominative in the pressure fluctuation. Although the average static pressure distribution on the circumference of the micro vortex pump increased gradually along inlet to outlet, the pressure pulse amplitudes were fluctuant and the maximum amplitude area was close to the stripper. Affected by the vortex motion in the pump, there were clutters in the spectrum from inlet to outlet even for the vortex pump with uniform circumferential blade spacing. The study also indicated that uneven circumferential spacing would yield additional frequency in the spectrum compared with even one and reduce the magnitude of the dominant frequency without decreasing the performance of the pump sharply. Based on the consequence, this paper proves the feasibility of applying uneven blade spacing to reduce pressure fluctuation in a vortex pump. And it could be meaningful for the noise and vibration reduction as well as development of vortex pumps.


1997 ◽  
Author(s):  
D. Pal ◽  
S. Sinha ◽  
D. Banerjee ◽  
C. Baker ◽  
M. Pandey ◽  
...  

2020 ◽  
Vol 375 (2) ◽  
pp. 1459-1501
Author(s):  
Justin Dekeyser ◽  
Jean Van Schaftingen
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 556
Author(s):  
Guangtai Shi ◽  
Zongku Liu ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Xuelin Tang

Tip clearance has a great effect on the flow and pressure fluctuation characteristics in a multiphase pump, especially at multiple operating points. The phase distribution and pressure fluctuation in tip clearance in a multiphase pump are revealed using the CFD (computational fluid dynamics) technology and high-speed photography methods. In this paper, the phase distribution, the gas-liquid two-phase velocity slip, and the pressure fluctuation intensity are comprehensively analyzed. Results show with the increase of the tip clearance, the multiphase pump pressurization performance is obviously deteriorated. In the meantime, the gas accumulation mainly occurs at the hub, the blade suction side (SS), and the tip clearance, and the maximum gas-liquid two-phase velocity difference is near the impeller streamwise of 0.4. In addition, the tip clearance improves the gas-liquid two-phase distribution in the pump, that is, the larger the tip clearance is, the more uniform the gas-liquid distribution becomes. Furthermore, the gas leads to the maximum pressure fluctuation intensity in the tip clearance which is closer to the tip leakage flow (TLF) outlet, and has a greater effect on the degree of flow separation in the tip clearance.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 311
Author(s):  
Renfei Kuang ◽  
Xiaoping Chen ◽  
Zhiming Zhang ◽  
Zuchao Zhu ◽  
Yu Li

This paper presents a large eddy simulation of a centrifugal pump impeller during a transient condition. The flow rate is sinusoidal and oscillates between 0.25Qd (Qd indicates design load) and 0.75Qd when the rotating speed is maintained. Research shows that in one period, the inlet flow rate will twice reach 0.5Qd, and among the impeller of one moment is a stall state, but the other is a non-stall state. In the process of flow development, the evolution of low-frequency pressure fluctuation shows an obviously sinusoidal form, whose frequency is insensitive to the monitoring position and equals to that of the flow rate. However, inside the impeller, the phase and amplitude in the stall passages lag behind more and are stronger than that in the non-stall passages. Meanwhile, the strongest region of the high-frequency pressure fluctuation appears in the stall passages at the transient rising stage. The second dominant frequency in stall passages is 2.5 times to that in non-stall passages. In addition, similar to the pressure fluctuation, the evolution of the low-frequency head shows a sinusoidal form, whose phase is lagging behind that by one-third of a period in the inlet flow rate.


2021 ◽  
Vol 11 (4) ◽  
pp. 1700
Author(s):  
Lemiao Qiu ◽  
Huifang Zhou ◽  
Zili Wang ◽  
Shuyou Zhang ◽  
Lichun Zhang ◽  
...  

As the demand for high-speed elevators grows, the requirements of elevator performance have also developed. The high speed will produce strong airflow disturbances and drastic pressure changes, which is prone to cause passenger discomfort. In this paper, an elevator car air pressure compensation method based on coupling analysis of internal and external flow fields (IE-FF) is proposed. It helps to adaptively track the ideal air pressure curve (IAPC) inside the car and controls the air pressure fluctuation to improve the ride comfort of the elevator. To obtain the air pressure transient value in the elevator car, an IE-FF modeling method is proposed. Based on the IE-FF model, the air pressure compensation system is developed. To realize the air pressure compensation inside the car, an adaptive iterative learning control (A-ILC) algorithm is proposed, to eliminate the passengers’ ear pressing due to the severe air pressure fluctuation. To verify the proposed method, the KLK2 (Canny Elevator Co., Ltd., 2015, Suzhou, China) high-speed elevator is applied. The numerical experiment results show that the proposed method has higher tracking accuracy and convergence speed compared to the classical Proportion Integral Differential (PID) algorithm and the Proportion Integral-iterative learning control (PD-ILC) algorithm.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2099
Author(s):  
Jian Gao ◽  
Anren Yao ◽  
Yeyi Zhang ◽  
Guofan Qu ◽  
Chunde Yao ◽  
...  

The super-knock poses new challenges for further increasing the power density of spark ignition (SI) engines. The critical factors and mechanism connecting regarding the occurrence of super-knock are still unclear. Misfire is a common phenomenon in SI engines that the mixture in cylinder is not ignited normally, which is often caused by spark plug failure. However, the effect of misfire on engine combustion has not been paid enough attention to, particularly regarding connection to super-knock. The paper presents the results of experimental investigation into the relationship between super-knock and misfires at low speed and full load conditions. In this work, a boosted gasoline direct injection (GDI) engine with an exhaust manifold integrated in the cylinder head was employed. Four piezoelectric pressure transducers were used to acquire the data of a pressure trace in cylinder. The spark plugs of four cylinders were controlled manually, of which the ignition system could be cut off as demanded. In particular, a piezoelectric pressure transducer was installed at the exhaust pipe before the turbocharger to capture the pressure traces in the exhaust pipe. The results illustrated that misfires in one cylinder would cause super-knock in the other cylinders as well as the cylinder of itself. After one cylinder misfired, the unburned mixture would burn in the exhaust pipe to produce oscillating waves. The abnormal pressure fluctuation in the exhaust pipe was strongly correlated with the occurrence of super-knock. The sharper the pressure fluctuation, the greater the intensity of knock in the power cylinder. The cylinder whose exhaust valve overlapped with the exhaust valve of the misfired cylinder was prone to super-knock.


Sign in / Sign up

Export Citation Format

Share Document