Green Materials Obtained by Geopolymerization for a Sustainable Future

2021 ◽  

Geopolymerization techniques allow the conversion of industrial waste materials into environmentally friendly materials. The vast list of applications includes thermal insulation, fire-resistant materials, construction materials, refractory linings, cements and concretes, encapsulation of radioactive and toxic waste etc. The book presents the technological processes involved, as well as the characterization and applications of the resulting ecomaterials.

Author(s):  
Rajesh Kumar ◽  
Amiya K. Samanta ◽  
D. K. Singha Roy

At present in India, about 960 million metric tons of solid waste is being generated annually as byproducts during industrial, mining, municipal, agricultural and other processes. Advances in solid waste management resulted in alternative construction materials as a substitute to traditional materials like bricks, blocks, tiles, aggregates, ceramics, cement, lime, soil, timber and paint. To safeguard the environment, efforts are being made for recycling different wastes and to utilize them in value added applications. The cement industries have been making significant progress in reducing carbon dioxide (CO2) emissions through improvements in process technology and enhancements in process efficiency, but further improvements are limited because CO2 production is inherent to the basic process of calcinations of limestone. In the past two decades, various investigations have been conducted on industrial wastes like flyash, blast furnace slag, Silica fume, rice husks and other industrial waste materials to act as cement replacements .This paper consist of a review extensively conducted on publications related to utilization of waste materials as cement replacement with an intention to develop a process so as to produce an eco-friendly concrete having similar or higher strength and thus simultaneously providing a remedy to environmental hazards resulting from waste material disposal.


Author(s):  
Rajesh Kumar ◽  
Amiya K. Samanta ◽  
D. K. Singha Roy

At present in India, about 960 million metric tons of solid waste is being generated annually as byproducts during industrial, mining, municipal, agricultural and other processes. Advances in solid waste management resulted in alternative construction materials as a substitute to traditional materials like bricks, blocks, tiles, aggregates, ceramics, cement, lime, soil, timber and paint. To safeguard the environment, efforts are being made for recycling different wastes and to utilize them in value added applications. The cement industries have been making significant progress in reducing carbon dioxide (CO2) emissions through improvements in process technology and enhancements in process efficiency, but further improvements are limited because CO2 production is inherent to the basic process of calcinations of limestone. In the past two decades, various investigations have been conducted on industrial wastes like flyash, blast furnace slag, Silica fume, rice husks and other industrial waste materials to act as cement replacements .This paper consist of a review extensively conducted on publications related to utilization of waste materials as cement replacement with an intention to develop a process so as to produce an eco-friendly concrete having similar or higher strength and thus simultaneously providing a remedy to environmental hazards resulting from waste material disposal.


Inorganics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Meriem Sassi ◽  
Andrea Simon

Aluminium dross is a hazardous industrial waste generated during aluminium production. It contains metallic oxides of aluminium and magnesium, other phases (aluminum nitride), and residues of fluxes and salts from the melting process of aluminium. Discarding this by-product is considered an environmental and economic challenge due to the high reactivity of dross with water or even air humidity. After removing the hazardous components from the as-received dross, one of the optional approaches is to incorporate the treated dross into construction materials. Dross is applied in several types of research as a secondary raw material source for alumina, clinker, cement or glass-ceramic production, but only a few papers focus on the usage of dross as a foaming agent for foams. Even fewer research are reported where dross was applied as a basic component of foam glasses. In this work, foam glasses were produced completely from waste materials: Aluminium dross, container (SLS) glass, and cathode ray tube (CRT) glass. The research holds several specificities, i.e., combining two industrial waste materials (CRT glass and dross), and adding an increased amount from the wastes. The physical and mechanical characteristics were examined with a special focus on the effect of the foam glass components on the microstructure, density, thermal conductivity, and compressive strength.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3835
Author(s):  
Robert Dylewski ◽  
Janusz Adamczyk

The energy efficiency of the construction sector should be determined by the cleanliness of the environment and, thus, the health of society. The scientific aim of this article was to develop a methodology for determining the optimum thickness of thermal insulation, taking into account both economic and ecological aspects and considering both heating and cooling costs. The method takes into account the number of degree days of the heating period, as well as the number of degree days of the cooling period. Variants in terms of different types of thermal insulation, various types of construction materials for building walls, climatic zones and heat sources, were taken into consideration. In order to find the optimum thicknesses of thermal insulation, both in economic and ecological terms, a metacriterion was used. The optimum thicknesses of thermal insulation with the use of the metacriterion were obtained in the range of 0.11–0.55 m. It was observed that the values of the optimum heat transfer coefficients for economic and ecological reasons do not depend on the type of construction materials used for vertical walls. The type of applied heat source is of the greatest importance for the size of the economic and ecological benefits. The proposed mathematical model for determining the optimum thickness of thermal insulation with the use of a metacriterion is a kind of generalization of earlier models from the literature.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2906
Author(s):  
Iuliana Răut ◽  
Mariana Călin ◽  
Zina Vuluga ◽  
Florin Oancea ◽  
Jenica Paceagiu ◽  
...  

Environmental contamination, extensive exploitation of fuel sources and accessibility of natural renewable resources represent the premises for the development of composite biomaterials. These materials have controlled properties, being obtained through processes operated in mild conditions with low costs, and contributing to the valorization of byproducts from agriculture and industry fields. A novel board composite including lignocelullosic substrate as wheat straws, fungal mycelium and polypropylene embedded with bacterial spores was developed and investigated in the present study. The bacterial spores embedded in polymer were found to be viable even after heat exposure, helping to increase the compatibility of polymer with hydrophilic microorganisms. Fungal based biopolymer composite was obtained after cultivation of Ganoderma lucidum macromycetes on a mixture including wheat straws and polypropylene embedded with spores from Bacillus amyloliquefaciens. Scanning electron microscopy (SEM) and light microscopy images showed the fungal mycelium covering the substrates with a dense network of filaments. The resulted biomaterial is safe, inert, renewable, natural, biodegradable and it can be molded in the desired shape. The fungal biocomposite presented similar compressive strength and improved thermal insulation capacity compared to polystyrene with high potential to be used as thermal insulation material for applications in construction sector.


2013 ◽  
Vol 740 ◽  
pp. 759-762
Author(s):  
Hao Zeng Bao

In many areas, there are still a development road construction materials, traditionally, often use reinforced concrete, asphalt and other adhesive method to strengthen the low strength of rock and soil anti-freeze expansion coefficient; And now all countries in the world are studying how to use industrial production waste development of new composite materials. One of the most development potential, the production of industrial waste - slime. This paper USES the Russian kazan national construction university experimental methods, in the experiment to improve frost heaving soil physical and mechanical properties of the method for the synthesis of adhesive, based on the feasibility and applicability, environmental assessment of research and analysis, for the use of adhesive put forward a lot of reference value.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Shamsad Ahmad ◽  
Ibrahim Hakeem ◽  
Mohammed Maslehuddin

In the exploratory study presented in this paper, an attempt was made to develop different mixtures of ultrahigh performance concrete (UHPC) using various locally available natural and industrial waste materials as partial replacements of silica fume and sand. Materials such as natural pozzolana (NP), fly ash (FA), limestone powder (LSP), cement kiln dust (CKD), and pulverized steel slag (PSS), all of which are abundantly available in Saudi Arabia at little or no cost, were employed in the development of the UHPC mixtures. A base mixture of UHPC without replacement of silica fume or sand was selected and a total of 24 trial mixtures of UHPC were prepared using different percentages of NP, FA, LSP, CKD, and PSS, partially replacing the silica fume and sand. Flow and 28-d compressive strength of each UHPC mixture were determined to finally select those mixtures, which satisfied the minimum flow and strength criteria of UHPC. The test results showed that the utilization of NP, FA, LSP, CKD, and PSS in production of UHPC is possible with acceptable flow and strength. A total of 10 UHPC mixtures were identified with flow and strength equal to or more than the minimum required.


2017 ◽  
Vol 7 (5) ◽  
pp. 514 ◽  
Author(s):  
Zeynab Emdadi ◽  
Nilofar Asim ◽  
Mohamad Amin ◽  
Mohd Ambar Yarmo ◽  
Ali Maleki ◽  
...  

Author(s):  
Aly Elgayar ◽  
Salwa Mamoun Beheiry ◽  
Alaa Jabbar ◽  
Hamad Al Ansari

Purpose Over the past decade, the United Arab Emirates (UAE) introduced several green regulatory guidelines, federal decrees, and a considerable number of environmentally friendly initiatives. Hence, the purpose of this paper is to investigate the top green materials and systems used currently in the UAE construction industry as per the new laws dictate as well as see if professionals are switching over to incorporate more green materials, systems, and/or designs. Design/methodology/approach The work involved reviewing internationally popular green materials and systems for construction, developing a questionnaire based on the literature review, surveying professionals in the seven UAE emirates, and ranking the findings based on the relative importance index. Findings Findings found the top used green materials and system in the UAE’s construction industry. As well as identified that there is a communication gap between the design and implementation phases that is possibly hindering the use of more green materials and systems. Originality/value This study sets a baseline to measure the UAE’s progress over the coming years in terms of integrating more green construction materials, systems, methodologies, and trends.


Author(s):  
Y.V. Sidelnik-Rubanova ◽  
◽  
E.Y Manshina

Honing using a silicate-cooling liquid improves the quality of work surfaces, which increases the reliability and durability of the interfaces. This coolant can be used in existing technological processes. it is cheap, fireproof, does not contain scarce components, is environmentally friendly, accessible and easy to manufacture.


Sign in / Sign up

Export Citation Format

Share Document