extreme salinity
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 20)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Thomas Foster Cooper

<p>This study documents the first detailed palynological analysis of early Eocene strata from the Lower Marl unit at Mead Stream, southern Marlborough, New Zealand. Examination of marine palynomorph assemblages and palynofacies analysis were used to improve biostratigraphic resolution and investigate paleoclimate across the Early Eocene Climatic Optimum (EECO; ~53–49 Ma)—a period characterised by the highest temperatures of the Paleogene. Early Eocene New Zealand dinocyst zones from NZE2–NZE4, and the Charlesdowniea coleothrypta zone are established across the Lower Marl for the first time in this study. Marine palynomorph assemblages originating in outer-neritic conditions and deposited on the upper slope represent low energy transport along the margin of a terrestrial discharge plume. Palynomorph assemblages do not provide insight into sea surface temperature (SST) trends. Palynomorph assemblages may reflect extremely low surface productivity. Cycles in organic matter between marine-dominant limestones to terrestrial-dominant marls, controlled by changes in temperature and seasonal precipitation, may represent orbital forcing by way of precession cycles; however the limited range of high resolution data from this study cannot statistically confirm this. An overall increase of allochthonous organic matter across the Lower Marl is likely representative of long-term background warming, culminating in peak EECO temperatures. The base of a hyperthermal, represented by carbon isotope excursion (CIE) previously identified at Mead Stream has been redefined in this study. High abundances of warm water, extreme salinity taxa coincide with the onset of this warming event.</p>


2021 ◽  
Author(s):  
◽  
Thomas Foster Cooper

<p>This study documents the first detailed palynological analysis of early Eocene strata from the Lower Marl unit at Mead Stream, southern Marlborough, New Zealand. Examination of marine palynomorph assemblages and palynofacies analysis were used to improve biostratigraphic resolution and investigate paleoclimate across the Early Eocene Climatic Optimum (EECO; ~53–49 Ma)—a period characterised by the highest temperatures of the Paleogene. Early Eocene New Zealand dinocyst zones from NZE2–NZE4, and the Charlesdowniea coleothrypta zone are established across the Lower Marl for the first time in this study. Marine palynomorph assemblages originating in outer-neritic conditions and deposited on the upper slope represent low energy transport along the margin of a terrestrial discharge plume. Palynomorph assemblages do not provide insight into sea surface temperature (SST) trends. Palynomorph assemblages may reflect extremely low surface productivity. Cycles in organic matter between marine-dominant limestones to terrestrial-dominant marls, controlled by changes in temperature and seasonal precipitation, may represent orbital forcing by way of precession cycles; however the limited range of high resolution data from this study cannot statistically confirm this. An overall increase of allochthonous organic matter across the Lower Marl is likely representative of long-term background warming, culminating in peak EECO temperatures. The base of a hyperthermal, represented by carbon isotope excursion (CIE) previously identified at Mead Stream has been redefined in this study. High abundances of warm water, extreme salinity taxa coincide with the onset of this warming event.</p>


2021 ◽  
Vol 7 (9) ◽  
pp. 723
Author(s):  
Cene Gostinčar ◽  
Jason E. Stajich ◽  
Anja Kejžar ◽  
Sunita Sinha ◽  
Corey Nislow ◽  
...  

The experimental evolution of microorganisms exposed to extreme conditions can provide insight into cellular adaptation to stress. Typically, stress-sensitive species are exposed to stress over many generations and then examined for improvements in their stress tolerance. In contrast, when starting with an already stress-tolerant progenitor there may be less room for further improvement, it may still be able to tweak its cellular machinery to increase extremotolerance, perhaps at the cost of poorer performance under non-extreme conditions. To investigate these possibilities, a strain of extremely halotolerant black yeast Hortaea werneckii was grown for over seven years through at least 800 generations in a medium containing 4.3 M NaCl. Although this salinity is well above the optimum (0.8–1.7 M) for the species, the growth rate of the evolved H. werneckii did not change in the absence of salt or at high concentrations of NaCl, KCl, sorbitol, or glycerol. Other phenotypic traits did change during the course of the experimental evolution, including fewer multicellular chains in the evolved strains, significantly narrower cells, increased resistance to caspofungin, and altered melanisation. Whole-genome sequencing revealed the occurrence of multiple aneuploidies during the experimental evolution of the otherwise diploid H. werneckii. A significant overrepresentation of several gene groups was observed in aneuploid regions. Taken together, these changes suggest that long-term growth at extreme salinity led to alterations in cell wall and morphology, signalling pathways, and the pentose phosphate cycle. Although there is currently limited evidence for the adaptive value of these changes, they offer promising starting points for future studies of fungal halotolerance.


2021 ◽  
Author(s):  
Celia Schunter ◽  
Lucrezia C Bonzi ◽  
Jessica Norstog ◽  
Jade Sourisse ◽  
Michael L Berumen ◽  
...  

The unstable nature of freshwater ponds in arid landscapes represent a sizable challenge for strictly aquatic organisms, such as fishes. Yet the Arabian Desert, bordering the coastline of the Red Sea, plays host to a species very well adapted to such extreme environments: the Arabian pupfish, Aphanius dispar. In this study, we estimated patterns of hydrological connectivity; population structure and stable isotope for samples of A. dispar living in small, isolated ponds of nearly-freshwater in the Arabian desert and highly saline coastal lagoons along the Red Sea. The genomic and hydrological analyses indicate that populations are largely separated by drainage origin, as fish from desert ponds appear to be transported to coastal lagoons of the Red Sea along ephemeral river systems arising from flash flood events. Further, our study indicates there is an ecological change when being washed from pond environments to coastal waters, due to a significant shift in muscle stable isotopes ratios between both groups. Considering that the genetic breaks are mostly observed between drainage origin, this study suggests that A. dispar can survive large changes in salinity and ecological regimes over small time-scales.


2021 ◽  
Vol 6 ◽  
pp. 49-64
Author(s):  
James E. O'Dwyer ◽  
Nicholas P. Murphy

The capacity of species to tolerate physical stressors is critical in a world of increasing environmental instability, however, past selective environments should dramatically impact on future stress tolerance, particularly in isolated populations. Through stabilising selection, long-term environmental stasis may reduce physiological tolerance, creating an evolutionary legacy where populations are less fit if environments change. Few empirical studies have investigated this evolutionary legacy of past selection, and of particular interest whether stabilising selection in a benign environment reduces stress tolerance in natural systems. Here we use multiple populations of salt-lake invertebrates (Coxiella striata, Austrochiltonia subtenuis) with either stable or fluctuating environmental histories to investigate the relationship between stabilising selection and environmental stress resistance. Tolerance to both salinity and temperature stress were examined in invertebrate populations from lakes with long-term (decadal) stable environments and compared with populations from lakes with extreme salinity variations. Individuals from stable environments demonstrated significantly lower survival under both increasing salinity and temperature stresses when compared with environmentally unstable populations. Our results support the hypothesis that the evolutionary legacy from stabilising selection in constant environments leads to reduced stress tolerance. This finding demonstrates that under an increasingly variable climate, the evolutionary legacies of populations will be critical for future survival and adaptation.


2021 ◽  
Vol 7 (2) ◽  
pp. 104
Author(s):  
Samah Mohamed Rizk ◽  
Mahmoud Magdy ◽  
Filomena De Leo ◽  
Olaf Werner ◽  
Mohamed Abdel-Salam Rashed ◽  
...  

Most of the rock-inhabiting fungi are meristematic and melanized microorganisms often associated with monument biodeterioration. In previous microbial profiling of the Egyptian Djoser pyramid, a Pseudotaeniolina globosa isolate was found. The current study aimed to characterize the P. globosa isolated from the Djoser pyramid compared with an Italian isolate at morphological, physiological, and molecular levels. Experiments were carried out to test temperature, salinity, and pH preferences, as well as stress tolerance to UV radiation and high temperature, in addition to a multi-locus genotyping using ITS, nrSSU or 18S, nrLSU or 28S, BT2, and RPB2 markers. Morphological and molecular data confirmed the con-specificity of the two isolates. However, the Egyptian isolate showed a wider range of growth at different environmental conditions being much more tolerant to a wider range of temperature (4–37 °C) and pH values (3.0–9.0 pH) than the Italian (10–30 °C, 4.0–6.0 pH), and more tolerant to extreme salinity levels (5 M NaCl), compared to the lowest in the Italian isolate (0.2 M NaCl). Besides, the Egyptian isolate was more tolerant to high temperature than the Italian isolate since it was able to survive after exposure to up to 85 °C for 5 min, and was not affected for up to 9 h of UV exposure, while the Italian one could not regrow after the same treatments. The Pseudotaeniolina globosa species was attributed to the family Teratosphaeriaceae of the order Capnodiales, class Dothideomycetes. Our results demonstrated that the Egyptian isolate could be considered an ecotype well adapted to harsh and extreme environments. Its potential bio-deteriorating effect on such an important cultural heritage requires special attention to design and conservation plans and solutions to limit its presence and extension in the studied pyramid and surrounding archaeological sites.


2021 ◽  
Vol 51 (1) ◽  
Author(s):  
Joseanna de Paiva Alves ◽  
Ambrosio Paula Bessa Junior ◽  
Gustavo Gonzaga Henry-Silva

ABSTRACT: This study aimed to determining the manner in which salinity influenced the growth of the macroalgae Gracilaria birdiae, with the objective of identifying its tolerance limits to this abiotic variable. The specimens were submitted to nutrient-enriched water of varying salinities (0, 10, 20, 30, 40, 50, and 60 ppt) for a 30-day period. Initially, under extreme salinity conditions (0 and 60 ppt) the growth of the G. birdiae suffered a negative impact. The macroalgae biomass exposed to 0 and 10 ppt salinities showed a reduction from day six until the experiment was completed. The macroalgae biomass exposed to salinities 20, 30, 40, and 50 ppt showed an increase, with no significant differences between the four treatments. This suggested that this salinity range was comfortable for this species to develop. We concluded that salinity is a crucial parameter which controls the growth of the G. birdiae. This seaweed was negatively influenced when exposed to values equal to or below 10 ppt and equal to 60 ppt, demonstrating good tolerance to salinities of 20, 30, 40 and 50 ppt.


2020 ◽  
Vol 11 ◽  
Author(s):  
Chao Yang ◽  
Juan Sun

High soil salinity is the main factor that limits soil microbial activity in the Yellow River Delta (YRD); however, its effects on fungal community and ecological function are unknown. Here, we comparatively investigated the diversity and structures of soil fungal communities targeting the internally transcribed fungal spacer gene using Illumina MiSeq sequencing methods under a salt gradient with five levels, namely, Low: low-salinity soil, Medium: medium-salinity soil, High: high-salinity soil, Extreme: extreme-salinity soil, and a non-salted site as the control (Non-saline). The results show that bulk density (BD) values significantly increased (p &lt; 0.05), while significantly lower values of soil total carbon (TC), total nitrogen (TN), and fungal Shannon and Chao indexes were observed as the salinization gradient increased (p &lt; 0.05). The relatively high levels of the families Nectriaceae and Cladosporiaceae distinguished two of the clusters, indicating two enterotypes of low (Non-saline and Low) and high (Medium, High, and Extreme) salinity soils, respectively. The family Nectriaceae was most abundant in the networks, and the positive correlations were more pronounced than negative correlations; however, Cladosporiaceae was the family most negatively correlated with others based on the network analysis. At the ecological function level, plant saprotrophs and litter saprotroph were significantly less abundant in extremely saline soil than non-saline soil. The change in soil properties (TC, TN, and BD) caused by soil salinization [salt and electrical conductivity (EC)] regulated the diversity of soil fungal communities, and ecological function, as indicated by Pearson correlation analyses. We suggest further investigation into the ecological functions of soil microorganisms in the extremely saline-alkaline soils of the YRD.


2020 ◽  
Vol 20 (11) ◽  
pp. 777-783
Author(s):  
Victor Nita ◽  
Magda Nenciu

The aim of this paper was to investigate the biological and ethological response of golden grey mullet Chelon auratus (Risso, 1810) fries collected from Romanian Black Sea shallow waters to different salinities and temperatures, in order to document the optimal conditions for controlled rearing. The species’ potential for aquaculture is enhanced by its eurihalyne and eurithermal adaptability, allowing it to grow in a variety of ecosystems, including the Romanian Black Sea area, with its highly variable salinity and temperature specificities. Three experimental set-ups were designed: a salinity tolerance test, with 5 salinity regimes (0.3‰, 5‰, 10‰, 15‰ and 20‰), a temperature tolerance experiment, involving both temperature decrease (down to 8°C) and increase (up to 34°C), and an extreme salinity test, reaching a maximum value of 95‰. The aggregated results obtained from the three experiments indicated that golden grey mullet fries can indeed tolerate a wide range of temperatures (8°C - 36°C) and salinities (5‰-70‰), with the optimal range between 10‰ and 30‰ salinity, at temperatures of 10°C - 25°C. The practical purpose of this investigation was supporting the diversification of local mariculture species, as mullets can be excellent candidates for the enhancement of aquaculture in the area.


Sign in / Sign up

Export Citation Format

Share Document