Adoptive Transfer of Tumor Expanded Regulatory T Cells (Tregs)

BIO-PROTOCOL ◽  
2016 ◽  
Vol 6 (16) ◽  
Author(s):  
Felipe Vences-Catalán ◽  
Shoshana Levy
2021 ◽  
Author(s):  
Seon-Young Park ◽  
HyeJin Yang ◽  
Minsook Ye ◽  
Xiao Liu ◽  
Insop Shim ◽  
...  

Abstract BackgroundTrimethyltin (TMT) is a potent neurotoxicant that leads to hippocampal neurodegeneration. Regulatory T cells (Tregs) play an important role in maintaining the immune balance in the central nervous system (CNS), but their activities are impaired in neurodegenerative diseases. In this study, we aimed to determine whether adoptive transfer of Tregs, as a living drug, ameliorates hippocampal neurodegeneration in TMT-intoxicated mice.MethodsCD4+CD25+ Tregs were expanded in vitro and adoptively transferred to TMT-treated mice. First, we explored the effects of Tregs on behavioral deficits using the Morris water maze and elevated plus maze tests. Biomarkers related to memory formation, such as cAMP response element-binding protein (CREB), protein kinase C (PKC), neuronal nuclear protein (NeuN), nerve growth factor (NGF), and ionized calcium binding adaptor molecule 1 (Iba1) in the hippocampus were examined by immunohistochemistry after mouse sacrifice. To investigate the neuroinflammatory responses, the polarization status of microglia was examined in vivo and in vitro using real-time reverse transcription polymerase chain reaction (rtPCR) and Enzyme-linked immunosorbent assy (ELISA). Additionally, the inhibitory effects of Tregs on TMT-induced microglial activation were examined using time-lapse live imaging in vitro with an activation-specific fluorescence probe, CDr20.ResultsAdoptive transfer of Tregs improved spatial learning and memory functions and reduced anxiety in TMT-intoxicated mice. Additionally, adoptive transfer of Tregs reduced neuronal loss and recovered the expression of neurogenesis enhancing molecules in the hippocampi of TMT-intoxicated mice. In particular, Tregs inhibited microglial activation and pro-inflammatory cytokine release in the hippocampi of TMT-intoxicated mice. The inhibitory effects of TMT were also confirmed via in vitro live time lapse imaging in a Treg/microglia co-culture system.ConclusionsThese data suggest that adoptive transfer of Tregs ameliorates disease progression in TMT-induced neurodegeneration by promoting neurogenesis and modulating microglial activation and polarization.


2015 ◽  
Vol 17 (8) ◽  
pp. 586-595 ◽  
Author(s):  
Jonadab E. Olguín ◽  
Jacquelina Fernández ◽  
Nohemí Salinas ◽  
Imelda Juárez ◽  
Miriam Rodriguez-Sosa ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 229-229
Author(s):  
Dennis Leveson-Gower ◽  
Janelle Olson ◽  
Emanuela I Sega ◽  
Jeanette Baker ◽  
Robert Zeiser ◽  
...  

Abstract Abstract 229 NKT cells, a subset of which are CD1d reactive, play an important immunoregulatory role in suppressing dysfunctional immune reactions, including graft-versus-host disease (GVHD). To explore the biological activity and mechanism of donor-type NKT in suppression of GVHD, we utilized highly purified (>95%) populations of donor (C57Bl6; H-2b) NKT (DX5+TCR+CD4+) cells adoptively transferred into lethally irradiated recipient (Balb/c; H-2d) animals with T cell depleted bone marrow (TCD-BM). Highly purified (>95%) NKT cells (5.5×105) from luciferase positive (luc+) C57BL/6 mice were infused into lethally irradiated Balb/c recipients with TCD-BM(5×106) from wild-type (WT) C57BL/6 mice, and the animals were monitored by bioluminescence imaging (BLI). By day 4 after transfer, an NKT derived signal was observed in spleen and lymph node (LN) sites, and between days 7 and 10, NKT had also migrated to the skin. Total photons emitted peaked near day 25 after transplantation, followed by a steady decline. To assess the impact of donor-type NKT cells on GVHD induction by conventional CD4+ and CD8+ T cells (Tcon), we co-transferred various doses of highly purified WT NKT at day 0 with TCD-BM, followed by 5×105 luc+Tcon/animal on day 2. As few as 2.5×104 NKT cells significantly improved survival of mice receiving 5×105 Tcon. Animal survival with Tcon only was 20% and for Tcon with NKT cells was 74%(p=0.0023). In contrast to what is observed with CD4+CD25+FoxP3+ regulatory T cells (Treg), the NKT cells did not suppress Tcon proliferation assayed by both in vivo BLI and in a mixed-leukocyte reaction. Analysis of serum cytokines with or without 2.5×104 NKT, following HCT with TCD-BM and Tcon, indicated the addition of NKT cells resulted in elevated levels of INF-γ, IL-5, and IL-6 in serum; significant differences were not observed in serum levels of IL-2, IL-4, IL-10, IL-17, or TNF-α. Intracellular levels of cytokines in Tcon were analyzed from the same groups. At 8 days after HCT, mice receiving NKT had fewer TNFα-positive cells in LNs (CD4: 45% to 27%; CD8 36% to 24%); by day 11, however, TNFαa levels between groups were equivalent. IFN-γ levels, which were high in both NKT treated and untreated groups at day 8 (85%-95%), decreased significantly in NKT treated mice by day 11 (CD4: 40%; CD8: 43%), but were abundant in Tcon only mice (CD4: 78%; CD8: 80%) (p=.0001). No significant changes were found in the intracellular levels of IL-2, IL-4, IL-5, IL-10, or IL-17 of Tcon in the presence or absence of NKT cells. NKT from both IL-4 -/- and IFN-γ -/- mice were less effective at suppressing GVHD than WT NKT, implicating these cytokines in the suppressive mechanism. Finally, we found that NKT do not have a major impact on the graft-versus-tumor effect of Tcon against a luc+ BCL-1 tumor. These studies indicate that NKT persist in vivo upon adoptive transfer and suppress GVHD, even at extremely low cell numbers, which is important given the relative paucity of this cell population. The mechanisms of GVHD suppression appear to be distinct to those of Treg and involve the production of IL-4 and IFN-γ by NKT resulting in a decrease in Tcon, which produce pro-inflamatory cytokines. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2782-2782
Author(s):  
Anna Maria Wolf ◽  
Dominik Wolf ◽  
Andrew McKenzie ◽  
Marcus Maurer ◽  
Alexander R Rosenkranz ◽  
...  

Abstract Abstract 2782 Tipping the balance between effector and regulatory cell populations is of critical importance in the pathogenesis of various autoimmune disorders. Both, mast cells (MC) and regulatory T cells (Treg) have gained attention as immunosuppressive cell populations. To investigate a possible interaction, we used the Th1- and Th17-dependent model of nephrotoxic serum nephritis (NTS), in which both MC and Treg have been shown to play a protective role. We recently provided evidence that adoptive transfer of wild-type (wt) Treg into wt recipients almost completely prevents development of NTS. We here show that Treg transfer induces a profound increase of MC in the kidney draining lymph nodes (LN). In contrast, transfer of wt Treg into animals deficient in MC, which are characterized by an exaggerated susceptibility to NTS, do not prevent acute renal inflammation. Blocking the pleiotropic cytokine IL-9, which is known to be critically involved in MC recruitment and proliferation, by means of an antagonizing monoclonal antibody in animals receiving wt Treg abrogated protection from NTS. Moreover, we provide clear evidence that Treg-derived IL-9 is critical for MC recruitment as mediators of their full immune-suppressive potential, as adoptive transfer of IL-9 deficient Treg failed to protect from NTS. In line with our hypothesis, absence of Treg-derived IL-9 does not induce MC accumulation into kidney-draining LN, despite the fact that IL-9 deficiency does not alter the general suppressive activity of Treg, as shown by in vitro testing of their functional capacities. Finally, we observed a significantly decreased expression of the MC chemoattractant Cxcl-1 in the LN of mice receiving IL-9 deficient Treg as compared to mice receiving wt Treg or control CD4+CD25− T cells, which might at least in part explain the deficient MC recruitment under these conditions. In summary, our data provide the first evidence that the immunosuppressive effects of adoptively transferred Treg depend on IL-9-mediated recruitment of MC to the kidney draining LN in NTS. This data is in perfect agreement with our previous report showing that CCR7-mediated LN occupancy of Treg is a prerequisite for their immune-suppressive potential and furthers adds a piece of information to the functional understanding of the in vivo anti-inflammatory effects of Treg. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4485-4485
Author(s):  
Antonio Pierini ◽  
Dominik Schneidawind ◽  
Mareike Florek ◽  
Maite Alvarez ◽  
Yuqiong Pan ◽  
...  

Donor derived regulatory T cells (Tregs) effectively prevent graft versus host disease (GVHD) in mouse models and in early phase clinical trials. Interleukin 2 (IL-2) therapy in patients with chronic GVHD (cGVHD) can increase Treg number and the Treg/CD4+ T cell ratio resulting in organ damage reduction and symptom relief. Less is known regarding Treg-based treatment for acute GVHD (aGVHD). In this study we evaluated the role of donor Treg cellular therapy for aGVHD treatment in well established murine models. T cell depleted bone marrow (TCD BM) from C57BL/6 mice was transplanted into lethally irradiated (8 Gy) BALB/C recipients together with 7.5x105 to 1x106/animal donor derived luc+ Tcons. Naturally occurring CD4+CD25+FoxP3+ donor type Tregs (nTregs) were purified from C57BL/6 donor mice. 2.5x105/mouse nTregs were injected at day 6 or 7 after transplant in mice that showed clear clinical signs of aGVHD and Tcon proliferation assessed by bioluminescence imaging (BLI). Survival analysis showed a favorable trend for nTreg treated mice, but the impact of this treatment was modest and not statistically significant (p 0.08). aGVHD is a disease characterized by the activation and rapid proliferation of alloreactive donor conventional T cells (Tcons) directed against host antigens, so one of the major obstacles of this approach is to overcome the large number and effector function of activated Tcons. Several studies have utilized ex vivo expansion of Tregs to increase their number with the goal of maintaining suppressive function. We developed a different strategy with the intent to “educate” Tregs to specifically suppress the reactive Tcon population. We incubated 2.5x105 donor derived Tregs with irradiated (3000 cGy) blood of aGVHD affected mice for 20 hours without further stimulation and injected the entire pool of these cells, termed educated Treg (eTregs), at day 7 or 8 after transplant and Tcon injection. Interestingly eTregs significantly improved aGVHD affected mouse survival (p = 0.0025 vs Tcons alone). BLI showed no difference between the groups (p = 0.85) because the treatment intervened after Tcon proliferation and activation was initiated. To evaluate eTreg impact on graft versus tumor (GVT) effects, we transplanted BALB/C mice with C57BL/6 TCD BM and 1x104/mouse luc+ A20 tumor cells along with 1x106/mouse donor Tcons and 2.5x105 eTregs. Mice that received TCD BM and A20 tumor cells alone died from progressive tumor growth, while mice that received Tcons died from GVHD without tumor engraftment. Further animals that received both Tcon and eTreg treatment did not have tumor engraftment demonstrating that eTregs do not impact Tcon mediated GVT effects. Further studies are ongoing to characterize the eTreg population as compared to nTreg, with respect to expression of activation markers and in functional assays. Our observations indicate that Tregs can be ex vivo educated to suppress in vivo reactive and proliferating Tcons. Moreover our data demonstrate that eTreg adoptive transfer is clinically feasible and promising. These findings may be relevant for the development of clinical grade Treg based cellular therapy for the treatment of conditions caused by immune dysregulation such as aGVHD and autoimmune diseases and for transplant tolerance induction. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3825-3825
Author(s):  
Dominik Schneidawind ◽  
Jeanette Baker ◽  
Corina Buechele ◽  
Everett H. Meyer ◽  
Robert S. Negrin

Abstract Graft-versus-host disease (GVHD) is driven by extensive activation and proliferation of alloreactive donor T cells causing significant morbidity and mortality following allogeneic hematopoietic cell transplantation (HCT). Invariant natural killer T (iNKT) cells are potent regulators of immune responses in both humans (TCRα Vα24-Jα18) and mice (TCRα Vα14-Jα18). As the iNKT cell receptor and the glycolipid-presenting molecule CD1d interaction is highly conserved, we explored the role of adoptively transferred third party CD4+ iNKT cells in a murine model of allogeneic HCT. BALB/c (H-2Kd) recipient mice were irradiated with 8 Gy and transplanted with T cell-depleted bone marrow together with 1x106 CD4+/CD8+ T cells (Tcon) from C57BL/6 (H-2Kb) donor mice. Adoptive transfer of purified (>95%) 5x104 CD4+ iNKT cells from FVB/N (H-2Kq) third party mice resulted in a significant survival benefit (p<0.001) while retaining Tcon mediated graft-versus-tumor (GVT) effects against A20 lymphoma cells (p=0.002). Consistently, weight and GVHD scores improved in mice that received a single injection of third party CD4+ iNKT cells as compared to animals that received Tcon alone. Notably, CD4+ iNKT cells from third party mice were as protective as CD4+ iNKT cells from donor mice (p=0.50). Signal intensity deriving from expanding luciferase expressing alloreactive Tcon was significantly lower in animals treated with third party CD4+ iNKT cells (p=0.003). Interestingly, inhibition of Tcon proliferation was similar to animals that received CD4+ iNKT cells from donor mice (p=0.90). In addition, adoptive transfer of third party CD4+ iNKT cells promoted a Th2-biased cytokine response of alloreactive donor T cells. Although we found that third party CD4+ iNKT cells were rejected by day +10 after allogeneic HCT, adoptive transfer of these cells resulted in a robust expansion of luciferase expressing donor CD4+FoxP3+ regulatory T cells (Treg) as measured by bioluminescence imaging (p=0.006). Using FoxP3DTR C57BL/6 donor mice, depletion of Treg from the graft abrogated both donor Treg expansion and protection from GVHD lethality through third party CD4+ iNKT cells. We conclude that low numbers of highly purified and adoptively transferred third party CD4+ iNKT cells protect from lethal GVHD through activation and expansion of donor Treg with retained GVT effects. Despite the fact that iNKT cells are a rare cell population, the in vivo activity of small numbers of cells and feasibility of in vitro expansion provide the basis for clinical translation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2526-2526 ◽  
Author(s):  
Marianne Delville ◽  
Emmanuelle Six ◽  
Florence Bellier ◽  
Nelly Sigrist ◽  
David Zemmour ◽  
...  

Abstract IPEX (Immunodysregulation Polyendocrinopathy Enteropathy X-linked) syndrome is the prototype of primary immunodeficiency with prevailing autoimmunity. The disease is caused by mutations in the gene encoding the transcription factor forkhead box P3 (FOXP3), which leads to the loss of function of thymus-derived CD4+CD25+ regulatory T (tTreg) cells. In IPEX patients, the absence of a functional Treg cell compartment leads to the development of multiple autoimmune manifestations (including severe enteropathy, type 1 diabetes and eczema) usually in the first months or years of life. The current treatments for IPEX syndrome include immunosuppressive, hormone replacement therapies. Unfortunately, immunosuppressive treatments are usually only partially effective and their dose is often limited because of the occurrence of infectious complications and toxicity. Currently, the only curative treatment for IPEX syndrome is allogeneic hematopoietic stem cell transplantation (HSCT). The absence of an HLA-compatible donor for all patients and their poor clinical condition particularly expose them to a risk of mortality when HLA partially compatible donors are used. For all these reasons, effective alternative therapeutic approaches are urgently needed. Various preclinical studies have shown that partial donor chimerism is sufficient for complete remission meaning that a small number of functional natural Treg is sufficient to restore immune tolerance. This suggests that a gene therapy approach designed to selectively induce a Treg program in T cells by expressing FOXP3 could be a promising potential cure for IPEX. However, several issues might compromise the success of this strategy: (i) will the introduction of FOXP3 alone be sufficient to induce a stable Treg program or will it require additional transcription factors to lock the Treg function and sustain the stability of transduced cells? (ii) Targeting effector CD4+ T cells might be an issue in terms of T-cell receptor repertoire, since the TCR repertoire of nTregs is different from the one of effector CD4+ T cells, (iii) will FOXP3-transduced T cells be able to migrate to appropriate tissues to control auto-immune reactions?, (iv) infusion of nTreg prevents the appearance of some autoimmune manifestations in murine models, however the infusion was done in prophylaxis before the appearance of the symptoms. In order to address these questions, we have developed a mouse scurfy model to evaluate the functional and stability of the correction in vivo in parallel to the characterization of gene corrected human CD4 T cells from IPEX patients. Scurfy mice develop a disease very close to human pathology due to a spontaneous mutation of Foxp3 gene. We improved Scurfy mice model to improve animal production and increase the timeline of treatement. We demonstrated that FOXP3 gene transfer into murine CD4+ T cells enable the generation of potent regulatory T cells. Indeed we showed the functional suppressive properties of the generated CD4-FOXP3 cells in an optimized flow-cytometry-based in vitro suppression assay. The ability of CD4-FOXP3 to prevent Scurfy disease by adoptive transfer in the first days of life is currently under evaluation. Similarly in humans, we demonstrated that FOXP3 gene transfer into CD4+ T cells from IPEX patients enable the generation of potent regulatory T cells, as shown through the functional in vitro suppressive properties of the generated CD4IPEX-FOXP3. Moreover comparison of the transcriptional profile of these regulatory CD4IPEX-FOXP3 cells to natural Treg by RNA-seq analysis demonstrated a good repression of cytokine transcripts (IL4/5/13/CSF2, CD40L), a strong repression of IL7R, a strong induction of IL1R2, and a moderate activation of typical Treg genes (IL2RA, IKZF2, CTLA4). Therefore, the introduction of a functional copy of the FOXP3 gene into an IPEX patient's T cells may be enough to restore immune tolerance and thus avoid the complications of allogenic HSCT. We will also discuss the challenge of generating a large, homogenous and stable population of cells in vitro for adoptive transfer and whether it can ensure long-term disease correction without generating a context of generalized immunosuppression. Disclosures No relevant conflicts of interest to declare.


2005 ◽  
Vol 12 (6) ◽  
pp. 786-792 ◽  
Author(s):  
Dean T. Nardelli ◽  
Joseph P. Cloute ◽  
K. H. Kevin Luk ◽  
Jose Torrealba ◽  
Thomas F. Warner ◽  
...  

ABSTRACT CD4+ CD25+ T cells are a population of regulatory T cells associated with control of arthritis in anti-interleukin-17 antibody-treated Borrelia-vaccinated and challenged gamma interferon-deficient mice. Here, we present direct evidence that adoptive transfer of enriched CD4+ CD25+ T cells from these mice can prevent the development of arthritis in Borrelia-vaccinated and challenged mice. These findings establish a major role for CD4+ CD25+ T cells in the prevention of arthritis in Borrelia-vaccinated and challenged animals.


Sign in / Sign up

Export Citation Format

Share Document