scholarly journals The Effect of annealing temperature on corrosion resistance and microstructure of Zr-Sn-Nb-Fe alloy

2019 ◽  
Vol 4 (4) ◽  
pp. 420-424
Author(s):  
G. Zhao ◽  
Zsolt Tiba ◽  
József Menyhárt

The Ti-2Al-2.5Zr titanium alloy plate in beta phase water quench at different times of the reentry after annealing is implemented while primary phase number and size distribution of samples are obtained. This research is carried out on corrosion behavior in 3.5% [mass fraction] NaCl solution. Experimental study showed that after the beta phase water quenching Ti-2Al-2.5Zr titanium alloyed after 500 oC annealing when partial recrystallization happened. There seems to be lots of tiny dispersion in the alloy that was annealed with its samples of six-party [HCP] structure of Ti, Zr, Al phase 2 with the dimension below 100 nm. Reaching 500 oC when the rate of annealing at a primary phase of the sample at 550 oC is low 90% of the primary phase is less than 100 nm. The changing of the rule of present decreasing also triggers little difference overall. Precipitation in the process of annealing Zr [Nb,Fe,Cr] 2is less that proves to be good for corrosion resistance.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2549
Author(s):  
Wenchao Yang ◽  
Jun Mao ◽  
Yueyuan Ma ◽  
Shuyuan Yu ◽  
Hongping He ◽  
...  

Electrochemical corrosion behavior of ternary tin-zinc-yttrium (Sn-9Zn-xY) solder alloys were investigated in aerated 3.5 wt.% NaCl solution using potentiodynamic polarization techniques, and the microstructure evolution was obtained by scanning electron microscope (SEM). Eight different compositions of Sn-9Zn-xY (x = 0, 0.02, 0.04, 0.06, 0.08, 0.10, 0.20, and 0.30 wt.%) were compared by melting. The experimental results show that when the content of Y reached 0.06 wt.%, the grain size of Zn-rich phase became the smallest and the effect of grain refinement was the best, but there was no significant effect on the melting point. With the increases of Y content, the spreading ratio first increased and then decreased. When the content of Y was 0.06 wt.%, the Sn-9Zn-0.06Y solder alloy had the best wettability on the Cu substrate, which was increased by approximately 20% compared with Sn-9Zn. Besides, the electrochemical corrosion experimental shows that the Y can improve the corrosion resistance of Sn-9Zn system in 3.5 wt.% NaCl solution, and the corrosion resistance of the alloy is better when the amount of Y added is larger within 0.02–0.30 wt.%. Overall considering all performances, the optimal performance can be obtained when the addition amount of Y is 0.06.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Kaijin Huang ◽  
Wei Li ◽  
Kai Pan ◽  
Xin Lin ◽  
Aihua Wang

In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and electrochemical techniques were used to study the microstructure and the corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7 phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.% NaCl solution.


2021 ◽  
Vol 2 (1) ◽  
pp. 61-77
Author(s):  
Hamid Reza Jafari ◽  
Ali Davoodi ◽  
Saman Hosseinpour

In this work, the corrosion behavior and surface reactivity of as-cast and heat-treated nickel aluminum bronze casting alloy (UNS C95800) in 3.5 wt% NaCl solution is investigated under stagnant and flow conditions. Increasing flow rate conditions are simulated using a rotating disk electrode from 0 to 9000 revolutions per minute (rpm). Optical micrographs confirm the decrease in the phase fraction of corrosion-sensitive β phase in the microstructure of C95800 after annealing, which, in turn, enhances the corrosion resistance of the alloy. Electrochemical studies including open circuit potentiometry, potentiodynamic polarization, and electrochemical impedance spectroscopy are performed to assess the effect of flow rate and heat treatment on the corrosion of samples at 25 and 40 °C in 3.5 wt% NaCl solution. For both as-cast and heat-treated samples, increasing the flow rate (i.e., electrode rotating rate) linearly reduces the corrosion resistance, indicating that the metal dissolution rate is significantly affected by hydrodynamic flow. Increasing the solution temperature negatively impacts the corrosion behavior of the as-cast and heat-treated samples at all flow conditions.


2016 ◽  
Vol 67 ◽  
pp. 05025
Author(s):  
Qiuyuan Feng ◽  
Lei Zhang ◽  
Hong Pang ◽  
PingHui Zhang ◽  
Xuewen Tong ◽  
...  

2013 ◽  
Vol 83 (5) ◽  
pp. 864-869 ◽  
Author(s):  
Elisa J. Kassab ◽  
José Ponciano Gomes

ABSTRACT Objective: To assess the influence of fluoride concentration on the corrosion behavior of nickel titanium (NiTi) superelastic wire and to compare the corrosion resistance of NiTi with that of beta titanium alloy in physiological solution with and without addition of fluoride. Materials and Methods: NiTi corrosion resistance was investigated through electrochemical impedance spectroscopy and anodic polarization in sodium chloride (NaCl 0.15 M) with and without addition of 0.02 M sodium fluoride (NaF), and the results were compared with those associated with beta titanium. The influence of fluoride concentration on NiTi corrosion behavior was assessed in NaCl (0.15 M) with and without 0.02, 0.04, 0.05, 0.07, and 0.12 M NaF solution. Galvanic corrosion between NiTi and beta titanium were investigated. All samples were characterized by scanning electron microscopy. Results: Polarization resistance decreased when NaF concentration was increased, and, depending on NaF concentration, NiTi can suffer localized or generalized corrosion. In NaCl solution with 0.02 M NaF, NiTi suffer localized corrosion, while beta titanium alloys remained passive. Current values near zero were observed by galvanic coupling of NiTi and beta titanium. Conclusions: There is a decrease in NiTi corrosion resistance in the presence of fluoride. The corrosion behavior of NiTi alloy depends on fluoride concentration. When 0.02 and 0.04 M of NaF were added to the NaCl solution, NiTi presented localized corrosion. When NaF concentration increased to 0.05, 0.07, and 0.12 M, the alloy presented general corrosion. NiTi corrosion resistance behavior is lower than that of beta titanium. Galvanic coupling of these alloys does not increase corrosion rates.


2011 ◽  
Vol 194-196 ◽  
pp. 1253-1256
Author(s):  
Ya Ni Zhang ◽  
Mao Sheng Zheng ◽  
Jie Wu Zhu

The corrosion behavior of CuCr, CuZr and CuCrZr alloys in NaCl solution is reported in this paper. The corrosion performance has been evaluated in NaCl solution atmosphere. The results show the corrosion resistance of pure copper decrease with the addition of the alloying elements initially. However, in the later exposure stages, the corrosion resistance of CuZr and CuCrZr alloy deteriorates significantly while the corrosion resistance of CuCr alloy is slightly better than that of pure copper. In addition, the results of the electrochemical experiments indicate that the different behavior for the element Cr and Zr in the base material and corrosion scales lead to the change of the corrosion resistance.


2013 ◽  
Vol 803 ◽  
pp. 226-229
Author(s):  
Da Ran Fang ◽  
Chun Liu ◽  
Feng Fang Liu

Al-3.9wt.%Cu alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy increases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the alloy subjected to ECAP can be improved by relief annealing.


2016 ◽  
Vol 22 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Dongfeng Li ◽  
Bangwen Yin ◽  
Yue Lei ◽  
Shengdan Liu ◽  
Yunlai Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document