scholarly journals Sharp Front analysis of moisture buffering

2021 ◽  
Vol 6 ◽  
pp. 78-81
Author(s):  
Christopher Hall ◽  
Gloria J. Lo ◽  
Andrea Hamilton

Moisture buffering describes the use of materials with high water-vapour sorption capacity to provide humidity control in interior spaces. Established models of the moisture dynamics of buffering are derived from conventional Fickian vapour-diffusion equations. We describe an alternative analysis using a Sharp-Front formulation. This yields a similar expression for the  moisture effusivity, several consistent scalings and a new definition of the moisture penetration depth. Features of the model are compared with  some published experimental data. A new sorption buffer index is a measurable experimental property that describes the water-vapour  buffer strength of the material.

2005 ◽  
Vol 156 (3-4) ◽  
pp. 100-103
Author(s):  
Rudolf Popper ◽  
Peter Niemz ◽  
Gerhild Eberle

The water vapour diffusion resistance of timber materials were tested in a wet climate (relative humidity ranging from 100%to 65% at 20 °C) and in a dry climate (relative humidity ranging from 0% to 65% and from 0% to 35% at 20 °c) with variation by relative humidity and vapour pressure gradient. The diffusion resistance of multilayer solid wood panels lies under or within the range of the solid wood (spruce), tending even to a lower range. This can be attributed to the loosely inserted middle lamella of the used solid wood panels, which were not correctly glued by the manufacturer. The diffusion resistance of the solid wood panels increases with decreasing moisture content and decreasing panel thickness, as well as with increasing water vapour gradient from 818 to 1520 Pa. There were clear differences between the tested timber materials. The diffusion resistance of particle composites is strongly dependent on the specific gravity. Due to laminar particles OSBs(Oriented Strand Boards) have a larger diffusion resistance than chipboards. The water vapour diffusion resistance of OSBs lies within the range of plywood.


2021 ◽  
pp. 152808372110142
Author(s):  
Ariana Khakpour ◽  
Michael Gibbons ◽  
Sanjeev Chandra

Porous membranes find natural application in various fields and industries. Water condensation on membranes can block pores, reduce vapour transmissibility, and diminish the porous membranes' performance. This research investigates the rate of water vapour transmission through microporous nylon and nanofibrous Gore-Tex membranes. Testing consisted of placing the membrane at the intersection of two chambers with varied initial humidity conditions. One compartment is initially set to a high ([Formula: see text]water vapour concentration and the other low ([Formula: see text], with changes in humidity recorded as a function of time. The impact of pore blockage was explored by pre-wetting the membranes with water or interposing glycerine onto the membrane pores before testing. Pore blockage was measured using image analysis for the nylon membrane. The mass flow rate of water vapour ( ṁv) diffusing through a porous membrane is proportional to both its area (A) and the difference in vapour concentration across its two faces ([Formula: see text], such that [Formula: see text] where K is defined as the moisture diffusion coefficient. Correlations are presented for the variation of K as a function of [Formula: see text]. Liquid contamination on the porous membrane has been shown to reduce the moisture diffusion rate through the membrane due to pore blockage and the subsequent reduced open area available for vapour diffusion. Water evaporation from the membrane's surface was observed to add to the mass of vapour diffusing through the membrane. A model was developed to predict the effect of membrane wetting on vapour diffusion and showed good agreement with experimental data.


1976 ◽  
Vol 6 (1) ◽  
pp. 40-48 ◽  
Author(s):  
R. A. Keller ◽  
E. B. Tregunna

Measurements of relative turgidity, transpiration rates, and photosynthetic rates on sun-grown and shade-grown western hemlock (Tsugaheterophylla (Raf.) Sarg.) were used to indicate effects of varying degrees of exposure.The sun-adapted form had low photosynthetic rates but maintained its water content under conditions of high evaporative demand. The shade-adapted form desiccated under exposed conditions, and in contrast with the sun-adapted form, its water vapour diffusion resistance decreased with increasing light intensity.


Sign in / Sign up

Export Citation Format

Share Document