scholarly journals Investigation of the weldability of copper to steel tubes using the electromagnetic welding process

2017 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Barbara Simoen ◽  
Koen Faes ◽  
Wim De Waele

Magnetic pulse welding is an innovative joining method which allows joining of dissimilar metal combinations. However, much remains unknown about the process and its parameters. In this paper, the weldability of copper tubes to steel rods and tubes is discussed, with the goal of examining the influence of the wall thickness of the supporting steel tube on the weld and the deformation of the components. Large deformations were observed, causing an undesirable decrease in diameter of the tubes. The quality of the obtained welds was shown to decrease with decreasing inner tube thickness as well, most likely due to the deformation of the workpieces in radial direction. Because of this, it is advisable to use an internal support to prevent deformation of the support tubes. To gain more insight in the precise mechanisms of weld formation and failure, numerical simulations are advised.

Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5925
Author(s):  
Voitech Stankevic ◽  
Joern Lueg-Althoff ◽  
Marlon Hahn ◽  
A. Erman Tekkaya ◽  
Nerija Zurauskiene ◽  
...  

The possibility of applying CMR-B-scalar sensors made from thin manganite films exhibiting the colossal magnetoresistance effect as a fast-nondestructive method for the evaluation of the quality of the magnetic pulse welding (MPW) process is investigated in this paper. This method based on magnetic field magnitude measurements in the vicinity of the tools and joining parts was tested during the electromagnetic compression and MPW of an aluminum flyer tube with a steel parent. The testing setup used for the investigation allowed the simultaneous measurement of the flyer displacement, its velocity, and the magnitude of the magnetic field close to the flyer. The experimental results and simulations showed that, during the welding of the aluminum tube with the steel parent, the maximum magnetic field in the gap between the field shaper and the flyer is achieved much earlier than the maximum of the current pulse of the coil and that the first half-wave pulse of the magnetic field has two peaks. It was also found that the time instant of the minimum between these peaks depends on the charging energy of the capacitors and is associated with the collision of the flyer with the parent. Together with the first peak maximum and its time-position, this characteristic could be an indication of the welding quality. These results were confirmed by simultaneous measurements of the flyer displacement and velocity, as well as a numerical simulation of the magnetic field dynamics. The relationship between the peculiarities of the magnetic field pulse and the quality of the welding process is discussed. It was demonstrated that the proposed method of magnetic field measurement during magnetic pulse welding in combination with subsequent peel testing could be used as a nondestructive method for the monitoring of the quality of the welding process.


2017 ◽  
Vol 8 (1) ◽  
pp. 8 ◽  
Author(s):  
Lodewijk Roeygens ◽  
Wim De Waele ◽  
Koen Faes

This paper describes the magnetic pulse welding process (MPW) for tubes. Material combinations of aluminium to steel and copper to aluminium were experimentally evaluated. The first major goal of this work is to experimentally obtain the optimal input parameters like the discharge energy, the stand-off distance and the tool overlap for MPW of the material combinations. Welding windows with all possible input parameters are created for both material combinations. Furthermore, a comparison is done between three coil systems; a single turn coil with field shaper, a single turn coil with a field shaper and transformer and a multi-turn coil and field shaper. Metallographic investigation of the samples, hardness tests and leak tests were executed to determine the most suitable machine set-up and the optimal input parameters for each set-up. A second major goal is to determine the influence of the target tube wall thickness on the deformation of tube-tube welds when no internal support is used.


2021 ◽  
Vol 65 ◽  
pp. 214-227
Author(s):  
Ziqin Yan ◽  
Ang Xiao ◽  
Xiaohui Cui ◽  
Yuanzheng Guo ◽  
Yuhong Lin ◽  
...  

2019 ◽  
Vol 6 ◽  
pp. 7
Author(s):  
Verena Psyk ◽  
Maik Linnemann ◽  
Christian Scheffler

Magnetic pulse welding is a solid-state welding process using pulsed magnetic fields resulting from a sudden discharge of a capacitor battery through a tool coil in order to cause a high-speed collision of two metallic components, thus producing an impact-welded joint. The joint is formed at room temperature. Consequently, temperature-induced problems are avoided and this technology enables the use of material combinations, which are usually considered to be non-weldable. The extension of the typically linear weld seam can reach several hundred millimetres in length, but only a few millimetres in width. Incremental or sequential magnetic pulse welding is a promising alternative to obtain larger connected areas. Here, the inductor is moved relative to the joining partners after the weld sequence and then another welding process is initiated. Thus, the welded area is extended by arranging multiple adjacent weld seams. This article demonstrates the feasibility of incremental magnetic pulse welding. Furthermore, the influence of important process parameters on the component quality is investigated and evaluated. The suitability of different mechanical testing methods for determining the strength of the individual weld seams is discussed. The results of numerical simulation are consulted in order to obtain deep understanding of the observed effects.


2018 ◽  
Vol 767 ◽  
pp. 431-438 ◽  
Author(s):  
Joerg Bellmann ◽  
Joern Lueg-Althoff ◽  
Sebastian Schulze ◽  
Soeren Gies ◽  
Eckhard Beyer ◽  
...  

Magnetic pulse welding (MPW) is a promising technology to join dissimilar metals and to produce multi-material structures, e.g. to fulfill lightweight requirements. During this impact welding process, proper collision conditions between both joining partners are essential for a sound weld formation. Controlling these conditions is difficult due to a huge number of influencing and interacting factors. Many of them are related to the pulse welding setup and the material properties of the moving part, the so-called flyer. In this paper, a new measurement system is applied that takes advantage of the high velocity impact flash. The flash is a side effect of the MPW process and its intensity depends on the impact velocity of the flyer. Thus, the intensity level can be used as a welding criterion. A procedure is described that enables the user to realize a fast parameter development with only a few experiments. The minimum energy level and the optimum distance between the parts to be joined can be identified. This is of importance since a low energy input decreases the thermal and mechanical shock loading on the tool coil and thus increases its lifetime. In a second step, the axial position of the flyer in the tool coil is adjusted to ensure a proper collision angle and a circumferential weld seam.


2021 ◽  
Vol 95 ◽  
pp. 2-10
Author(s):  
Manh Ngo Huu ◽  

Orbital - TIG (OT) auto welding process was applied for the weld connection of the fixed pipe lines. The heat distribution of the OT welding has influenced phase transformation and quality of the weld. In this paper, the temperature fields and phase transformation of 316L stainless steel pipes have been simulated during OT auto welding process. The numerical simulation has been used and supported by the JMATPRO 7.0 and SYSWELD softwares.


2016 ◽  
Vol 879 ◽  
pp. 1662-1667 ◽  
Author(s):  
Thaneshan Sapanathan ◽  
Kang Yang ◽  
Dmitrii Chernikov ◽  
Rija Nirina Raoelison ◽  
Vladimir Gluschenkov ◽  
...  

Magnetic pulse welding (MPW) is a solid state joining process, successfully utilized to join dissimilar metals. This advantage attracted manufacturing industries to fabricate hybrid materials to attain materials with a combination of multiple attributes. The high speed impact during the welding process causes various interfacial phenomena, which have been reported in previous research studies. Combined high speed collision, Joule heating due to eddy current and plastic heat dissipation cause noticeable heating in the workpiece. The heating from the plastic work and collision energy could particularly be significant at the vicinity of the interface compared to other regions of the workpiece. The Joule heating due to eddy current affects the entire workpiece that is prominent before the collision. There is a sharp increase of the temperature at the onset of weld formation due to dissipation of plastic work during the collision. 3D simulations of coupled electromagnetic-mechanical-thermal were carried out to investigate the heating due to the combined Joule heating and plastic dissipation. A case study of MPW, consist of a one turn coil combined with a field shaper, is used to investigate the welding process. The simulations were performed using LS-DYNA®, which has the capability of using both finite and boundary elements to solve the thermo-mechanical problem during electromagnetic forming. The predicted temperature distributions from numerical simulations show expected phenomena of Joule heating and plastic heat dissipation while the analytical approach used to estimate the localized increase in temperature due to supersonic gaseous compression. Minimizing the heating effect by identifying the influencing factors could help to optimize and control the quality of the magnetic pulse welded parts.


2016 ◽  
Vol 7 (1) ◽  
pp. 8 ◽  
Author(s):  
Wim Demonie ◽  
Koen Faes ◽  
Wim De Waele

Little is known about the influence of the main geometrical parameters (overlap, stand-off and free length) and the energy input on welds formed by electromagnetic pulse welding. The Taguchi experimental design method was applied for determining the underlying relations for dissimilar sheet welding of copper and aluminium. The weld quality was evaluated based on four output parameters: the weld length, the size of the interfacial layer, the lap shear strength and the thickness reduction of the flyer sheet. The influence of the overlap and free length showed to be non-negligible; this in contrast to the small amount of attention these parameters receive in other publications.


Sign in / Sign up

Export Citation Format

Share Document