scholarly journals Analisis Potensi Likuefaksi dan Perbaikan Tanah dengan Stone Column: Studi Kasus pada Coal Shelter PLTU Lontar, Banten

Author(s):  
Yuli Fajarwati ◽  
Rama Indera Kusuma

ABSTRACT The high demand for electricity needs requires the availability of new generation sites. The new plant developed is a PLTU in Lontar. The condition of coal shelter as a research site dominated by silty clay and silty sand and located in the earthquake zoning is high that the planning of the coal shelter area must accordance with the feasibility of building establishment, it is necessary to analyze the potential liquefaction and improvement methods. Soil improvement efforts to reduce the potential for liquefaction include soil improvement with stone columns. The method of liquefaction analysis in this study uses the method developed by Idriss and Boulanger. The results of the analysis of the potential for liquefaction at BH-1 occurred at a depth of 3-16 m and at BH-3 the potential for liquefaction occurred at a depth of 4-24 m. Potential of the thickest layer for liquefaction is at BH-3 with a depth of 24 m. Improvement with a stone column can reduce the potential for liquefaction and can increase the value of the safety factor against the potential for liquefaction at the coal shelter location. Improvement analysis with a stone column using Plaxis software, the value of the safe factor after installing the stone column at BH-1 FS 2.89, at BH-3 FS became 2.65. ABSTRAKBanyaknya permintaan kebutuhan listrik yang tinggi diperlukan ketersediaan lokasi pembangkit baru. Pembangkit baru yang dikembangkan yaitu PLTU Batubara di Lontar. Kondisi coal shelter sebagai lokasi penelitian yang didominasi oleh lapisan tanah lempung kelanauan dan pasir kelanauan serta berada pada zonasi gempa cukup tinggi sehingga perencanaan area coal shelter harus memenuhi syarat kelayakan pendirian bangunan, maka perlu dilakukan analisis potensi likuefaksi serta metode perbaikannya. Upaya perbaikan tanah untuk mengurangi potensi likuefaksi yaitu perbaikan tanah dengan stone column (kolom batu). Metode analisis likuefaksi pada penelitian ini menggunakan metode yang dikembangkan oleh Idriss dan Boulanger. Hasil analisis potensi likuefaksi pada titik BH-1 terjadi di kedalaman 3-16 m dan pada titik BH-3 potensi likuefaksi terjadi pada kedalaman 4-24 m. Lapisan yang paling tebal mengalami potensi likuefaksi ada pada titik BH-3 dengan kedalaman 24 m. Perbaikan dengan stone column dapat mengurangi potensi likuefaksi dan mampu meningkatkan nilai faktor keamanan terhadap potensi likuefaksi di lokasi coal shelter. Analisis perbaikian dengan stone column menggunakan software Plaxis, nilai faktor aman setelah dipasang stone column pada titik BH-1 FS 2,89, pada titik BH-3 FS menjadi 2,65.

2011 ◽  
Vol 19 (3) ◽  
pp. 17-21 ◽  
Author(s):  
J. Pivarč

Stone Columns - Determination of the soil improvement factorA stone column is one of the soil stabilizing methods that is used to increase strength, decrease the compressibility of soft and loose fine graded soils, accelerate a consolidation effect and reduce the liquefaction potential of soils. The columns consist of compacted gravel or crushed stone arranged by a vibrator. This paper deals with Priebe's theory (1976) on the design of an improvement factor, which belongs among the most used analytical methods and also describes the numerical and laboratory models of stone columns. The improvement factors calculated from numerical and laboratory models are compared with the improvement factors resulting from Priebe's theory.


Author(s):  
Nahla Mohammed Salim ◽  
Shatha Hasan ◽  
Kawther Al-Soudany

Many researchers’ studies have shown that stone column is the best material to use to improve the bearing capacity of clayey soils. There are millions of waste volumes resulting from daily human activities. This excess waste leads to disposal problems and also causes environmental contamination and health risks. Demolished concrete is such one waste material that is produced from building demolition in Baghdad, Iraq. This paper describes experimental work conducted at the University of Technology that was carried out to investigate the improved bearing capacity of soft clay using crushed stone, followed by replacing crushed stone with concrete waste with the same relative density and grain size. The replacement was carried using waste concrete with different percentages corresponding to 25%, 50%, 75%, and 100%. The main conclusion drawn is that the bearing capacity increased to 119% by using crushed stone column, while the bearing capacity increased to 155% by using 100% of crushed concrete waste.


2021 ◽  
Vol 23 (08) ◽  
pp. 538-548
Author(s):  
Mandeep Singh ◽  
◽  
Dr Prashant Garg ◽  

In the building industry, ground improvement techniques based on stone column are widely employed. It is a very successful approach for enhancing the engineering characteristics of soil in all aspects, as well as reducing the settling issue in poor-grounded soils including silt, clay, silty sand, and organic soil. The performance of stone columns, is determined by the confining pressure provided by the surrounding soils. Engineering constructions built on thick layers of soft soil strata face issues such as limited bearing capacity, excessive total and differential settlement, lateral spreading, and so on. To address such issues, many ground improvement techniques are available. In exceptionally soft soils, the lateral confining pressure may be inadequate, resulting in column bulging failure. Individual stone column encasement improves lateral resistance to bulging by adding restricting pressure. This research focuses on the geotechnical aspects of building on closed landfill sites. A total of 33 models were tested in a geotechnical engineering laboratory on virgin former landfill soil and stone column with and without encasement in this current study. The increased diameter, length and L/D ratio of the column has demonstrated that the load capacity has increased and soil settling has decreased. When an unreinforced stone column has been installed, the ultimate bearing capacity of landfill soil is increased by 75-112.50 per cent and 87.50-176 per cent respectively, for 10mm and 20mm diameter stone column. Furthermore, when a fully reinforced stone column has been installed, it had increased by 156.25-212.50 per cent and 200-298 per cent for 10mm and 20mm diameters respectively. The stiffness of soil is increased by the stone column, which contributes to increase in the load capacity. The geogrid layer confines an aggregate, which contribute to enhance shear stiffness and bearing capacity.


2019 ◽  
Vol 5 (3) ◽  
pp. 702 ◽  
Author(s):  
Mahdi O Karkush ◽  
Anwar Jabbar

A stone column is one of the soil improvement methods that are mainly used for improving the geotechnical behavior of soft soils. For deep improvement of soft soil, the floating stone columns are considered the best and effective economically which provide lateral confinement and drainage and longitudinal skin friction. In this study, six tests were carried out on the natural soft soil of undrained shear strength of 5.5 kPa improved by single and two linear distributed floating stone columns. The stone column dimensions are 30 mm in diameter and 180 mm in length and the stone column material is sand of high internal friction angle of 48°. The natural and improved soil samples are tested under isolated raft foundation of dimensions 120×120 mm subjected to vertical static and cyclic loading of frequency 2Hz and continued for 50 seconds. The results showed a significant improvement in soil bearing capacity when reinforced with stone columns despite the small area replacement ratio, where the bearing capacity of improved soil increased by 120 to 145%. The compressibility of improved soil decreased by 57 to 86% in comparison with that of natural soft soil. Also, the floating stone columns reduced the porewater pressure, where the stone columns considered efficient in providing short drainage pathways. This can be one of the reasons why soil reinforced with floating stone columns hold higher cyclic and static stresses regardless the end bearing of stone columns.


2012 ◽  
Vol 256-259 ◽  
pp. 1060-1063 ◽  
Author(s):  
Yu Qing Yuan ◽  
Wei Li ◽  
Xue Chan Li ◽  
Tao Guo

To improve the wet soft silty sand bearing capacity, vibro-replacement stone column was used. Compared with the practical construction, this paper introduces the vibro-replacement stone column strengthening soft foundation. The principle of the construction, quality control, and inspection technology were discussed. Based on Drucker - Prager elastic-plastic model, different high wet soft foundation was simulated with the numerical analysis software. Results show that vibro-replacement stone column can significantly reduce the roadbed horizontal displacement. The displacement of the subgrade reinforced by stone columns decreases respectively 0.1, 0.2, 0.6, 2.3 cm than the other. If the subgrade is 4 m in height, the displacement reaches 0.2, 0.5, 0.7 cm when the length of stone column is 5, 10, 15m, respectively. To sum up, five - metre long pile is more economic and reasonable.


2018 ◽  
Vol 1 ◽  
pp. 33-38
Author(s):  
Kwa S.F. ◽  
Kolosov E.S.

The behavior of the fully saturated clay soil reinforced by stone columns subjected to cyclic load is of considerable very important in the design of railway subgrades, these soft clay soil are characterized by high settlement and low bearing capacity because of the excess pore pressure due to heavy freight trains significantly reduces the bearing capacity which causes serious problems, the used of stone column for reinforced the saturated clay soil will reduced the settlement and increase the bearing capacity. The purpose of the current research is cases study of foundation soil improvement by reduced the settlement for a building structure using stone columns system with and without geogrid encasement under cyclic load with rate of loading 5 mm/sec.


2001 ◽  
Vol 38 (5) ◽  
pp. 1134-1141 ◽  
Author(s):  
G C McRostie ◽  
C B Crawford

A parcel of land just south of Ottawa at Gloucester has been the site of an unusual amount of geotechnical research over the past 45 years. The parcel was recently to have been placed on the open real estate market but has been saved for scientific purposes and is now designated as "Canadian Geotechnical Research Site No. 1 at Gloucester". This paper presents an outline of the research that has been conducted at the site, in four general divisions, namely compressibility, strength, deformation, and soil property improvement. It is hoped that the site will stimulate the development and evaluation of new tools and techniques, foster scientific cooperation and information exchange, and allow the results of research involving the site to improve the state of practice, education, and research.Key words: sensitive clay, compressibility research, strength research, deformation research, soil improvement research.


Author(s):  
Lavanya Lingareddy ◽  
Parthiban Krishnamoorthy

Like other new generation information technologies such as IoT, big data, AI, and cloud, cryptocurrency and blockchain became buzz words in both industry and academia due to their advantageous features. With the features like decentralization, transparency, immutability, blockchain technology became more famous and is emerging in almost all fields like banking, education, healthcare, government, and real estate. Blockchain technology was introduced in the year 1991. It came into existence after this technology was created for bitcoin, a digital cryptocurrency by Santoshi Nakamoto in the year 2008. Since then, the blockchain is evolving rapidly. Even though blockchain usage is in high demand in all the sectors and it has received attention from many international organizations, most of the people lag in knowledge of blockchain technology and Cryptocurrency and how exactly they work. This chapter explores more in detail what blockchain technology is, how it works, and its applications.


Author(s):  
Jakub Stacho ◽  
Monika Sulovska

Stone columns made of coarse-grained materials and crushed stone are one of the most-used technologies for soil improvement all over the world. Stone columns improve the strength and deformation properties of subsoil and reduce the time required for the consolidation of fine-grained soils. The impact of the improvement depends on the properties of the original subsoil as well as the properties of the coarse-grained materials used for the stone columns. The article deals with the effects of the properties of coarse-grained materials for stone columns on the settlement and consolidation times of improved subsoil for the foundation of a factory. Numerical modeling as a 2D task was performed using Plaxis geotechnical software. The numerical analysis included two methods of modeling stone columns in a plane strain model, i.e., one method often used by practical engineers in the region of Slovakia, and one modified method, which allowed for a more accurate determination of the final settlement and consolidation time. The method modeled stone columns as continuous walls, and the compaction of the soil between the stone columns was taken into account. The results showed that the type of coarse-grained material can significantly affect the final settlement and time of consolidation. Stone columns made of quarry stone were suitable in the given geological conditions regardless of the design of the mesh, while stone columns made of pebble gravel were suitable only with a mesh of 1.5 x 1.5 m.


Sign in / Sign up

Export Citation Format

Share Document