scholarly journals An Algorithm for Crawling Robot Climbing or Descending Stair Flights

2020 ◽  
Vol 24 (3) ◽  
pp. 21-34
Author(s):  
L. Yu. Vorochaeva ◽  
S. I. Savin ◽  
A. V. Mal'chikov

Purpose of research. The aim of this work is to develop an algorithm for sequential movements of a three-section crawling robot, which enables the device overcoming flights of stairs by crawling on each step or descending each step in the reverse sequence of stages. A special feature of the robot is the combination of three types of movement: snake-, worm - and caterpillar-like, which makes the device more maneuverable and expands its functionality. Methods. To develop a mathematical model of the movement of crawling robot sections at each stage of the algorithm and description of its contact interaction with the surface, the method of dynamics of multi-mass systems is used; methods of kinematic and structural analysis of the robot mechanism are used to form constraints that restrict the movement of the sections. Results. The article presents the results of simulation experiments of a robot crawling on a step of a flight of stairs and descending it, confirming the adequacy of the proposed movement algorithm. Positions of base points at the moments of the beginning and completion of the stages, section lengths and their turning angles in the vertical plane correspond to the values of these variables specified in the algorithm in the form of applied links and laid down conditions for the completion of stages. Conclusion. The article describes a detailed step-by-step algorithm for robot crawling on a step of a stairs flight and descending it; it is shown that crawling and descending are opposite operations from the point of view of sequence of stages implementing. The advantage of this algorithm is the versatility of its stages for moving the robot up and downstairs. In addition, the algorithm stages are designed in such a way that the robot does not roll over.

Author(s):  
Nicolino Foschini Neto

This work deals with the context of formation of Professor Dr. John Hadji Argyris (1913-2004) in Germany during the 1930s and Switzerland during the 1940s. Using primary documentation, we elucidate publications with scientific theories of structural analysis made during his job as a member of a secret Commission in the Royal Aeronautical Society, in England. We explore the content of the serial publication of the Theorems of Energy and Structural Analysis of the Aircraft Engineering Journal, from 1954 and 1955, from Argyris’s lectures at Imperial College, London, where he was a professor and director of the Department of Aeronautical Structures. The goal of this research is to analyze the systematic method of calculation of Argyris, starting from the theory of Computational Simulation. From this point of view, the conceptual mathematical model would be a computational model based on the unification of the concepts of Elasticity Theory and Energy Theorems formulated in matrix mathematics for communication with the computer.


2021 ◽  
Vol 4 (3) ◽  
pp. 30-36
Author(s):  
Ziyoda Mukhamedova ◽  
◽  
Zakhro Ergasheva

The article is devoted to the study of the operation of the container terminal of the Tashkent-Commodity station during the turnover of the container block-train. An organizational and technological model of the container turnover in the form of a network graph is considered, and the technological capacity of the terminal is calculated by modeling operations with containers in the form of a step-by-step algorithm. The resulting methodology makes it possible to predict the duration of the turnover of a block-train and is a kind of imitation of the Uzbek railway network from the point of view of launching a container block-train.Keywords: cargo transportation, admission,delivery, loading, unloading, container, terminal, block-train, algorithm


2017 ◽  
Vol 992 (4) ◽  
pp. 32-38 ◽  
Author(s):  
E.G. Voronin

The article opens a cycle of three consecutive publications dedicated to the phenomenon of the displacement of the same points in overlapping scans obtained adjacent CCD matrices with opto-electronic imagery. This phenomenon was noticed by other authors, but the proposed explanation for the origin of displacements and the resulting estimates are insufficient, and developed their solutions seem controversial from the point of view of recovery of the measuring accuracy of opticalelectronic space images, determined by the physical laws of their formation. In the first article the mathematical modeling of the expected displacements based on the design features of a scanning opto-electronic imaging equipment. It is shown that actual bias cannot be forecast, because they include additional terms, which may be gross, systematic and random values. The proposed algorithm for computing the most probable values of the additional displacement and ways to address some of the systematic components of these displacements in a mathematical model of optical-electronic remote sensing.


2002 ◽  
Vol 34 (03) ◽  
pp. 484-490 ◽  
Author(s):  
Asger Hobolth ◽  
Eva B. Vedel Jensen

Recently, systematic sampling on the circle and the sphere has been studied by Gual-Arnau and Cruz-Orive (2000) from a design-based point of view. In this note, it is shown that their mathematical model for the covariogram is, in a model-based statistical setting, a special case of the p-order shape model suggested by Hobolth, Pedersen and Jensen (2000) and Hobolth, Kent and Dryden (2002) for planar objects without landmarks. Benefits of this observation include an alternative variance estimator, applicable in the original problem of systematic sampling. In a wider perspective, the paper contributes to the discussion concerning design-based versus model-based stereology.


1998 ◽  
Vol 12 (29n31) ◽  
pp. 3063-3073 ◽  
Author(s):  
Leonid Berlyand

We consider a mathematical model which describes an ideal superfluid with a large number of thin insulating rods and an ideal superconductor reinforced by such rods. We suggest a homogenization procedure for calculating effective properties of both composite media. From the numerical point of view the procedure amounts to solving a linear problem in a periodicity cell of unit size.


Author(s):  
D.V. Ivashkova ◽  
K.M. Sagova

The article is devoted to the consideration of the role of student support in the adaptation of the Finn-ish short-term program of skills formation “Skilful Class” on the territory of Russia. The program is realizing in Russian educational organizations within the framework of joint projects of Moscow State University of Psychology & Education and Helsinki Brief Therapy Institute. The implementation of projects is realizing with the accompaniment of student-mentors, whose participation, presumably, has a positive effect on the effectiveness of the “Skilful Class” program. The article considers the in-teraction between children and student-mentors from the point of view of their generational commu-nity, as well as the creation of a supportive community in the process of skill formation. Information about the methodological basis of the program is given and the 15-step algorithm of its action is de-scribed, with the rationale for the participation of student-mentors in its implementation. A number of psychological problems for the prevention of which the program is used by foreign and Russian specialists are indicated.


2018 ◽  
Vol 172 ◽  
pp. 03006
Author(s):  
Harish Panjagala ◽  
Balakrishna M ◽  
Shasikant Kushnoore ◽  
E L N Rohit Madhukar

Automobile have various parts which are important for good running of the vehicle. The most important safety components from a structural point of view are the road wheels. They are required to be lighter and more fascinating to the buyer all the time. This implies that it's important to perform a lot of accurate strength assessment on wheel styles. The wheel rim plays a major role in vehicle dynamics. This paper deals with the design and model of different wheel rims based on weight optimization and also structural analysis has been carried out. It has been compared with standard values by varying two different materials. In addition, from the obtained outputs of simulations and the weight optimization, we suggested Aluminium alloys as most suitable material for SUV. Model is created by using SOLIDWORKS software 2015 and structural analysis &; weight optimization is done by using ANSYS WORKBENCH 16.0.


Author(s):  
Iulia Clitan ◽  
◽  
Adela Puscasiu ◽  
Vlad Muresan ◽  
Mihaela Ligia Unguresan ◽  
...  

Since February 2020, when the first case of infection with SARS COV-2 virus appeared in Romania, the evolution of COVID-19 pandemic continues to have an ascending allure, reaching in September 2020 a second wave of infections as expected. In order to understand the evolution and spread of this disease over time and space, more and more research is focused on obtaining mathematical models that are able to predict the evolution of active cases based on different scenarios and taking into account the numerous inputs that influence the spread of this infection. This paper presents a web responsive application that allows the end user to analyze the evolution of the pandemic in Romania, graphically, and that incorporates, unlike other COVID-19 statistical applications, a prediction of active cases evolution. The prediction is based on a neural network mathematical model, described from the architectural point of view.


Author(s):  
V. Y. Stepanov

The article gives a classification of the main components of unmanned aerial vehicle (UAV) systems, gives the areas in which the application of UAVs is actual in practice today. Further, the UAV is considered in more detail from the point of view of its flight dynamics analysis, the equation necessary for creating a mathematical model, as well as the model of an ordinary dynamic system as a non-stationary nonlinear controlled object, is given. Next, a description of the developed software for modeling and a description of program algorithm are given. Finally, a conclusion describes the necessary directions for further scientific researches.


2021 ◽  
Vol 25 (3) ◽  
pp. 332-341
Author(s):  
I. V. Fokin ◽  
A. N. Smirnov

The aim was to create a mathematical model describing the development of a production (shop-to-shop) routing of mechanical engineering products based on a 3D model and allowing the cost of the final product to be reduced. The developed mathematical model was simulated based on 3D models designed in the Siemens NX system, which were subsequently imported into the *stp format and recognized by a designed module written in the Phyton programming language. The factors of the production environment affecting the formation of the production routing of mechanical engineering products were determined. A diagram of the algorithm for the “constructive element - technological operation - means of technological equipment (equipment-tool)” relationship was developed. Based on the results of testing the developed mathematical model, the use of neural networks as a tool for the implementation and automation of the work was found advantageous as compared to the standard scheme of work of a process engineer when developing a production routing of mechanical engineering products. These advantages include a decrease in the time for the development of a routing and the cost of the final product. The developed model has a practical limitation consisting in a rather complex geometry of some structural elements of a unit, which impedes the development of an algorithm for recognizing their structure. The use of a neural network prototype in automatic mode is advisable for relatively simple parts (including a flange, hole, chamfer and rounding). However, since the number of simple units from the recognition point of view amounts to about 40% among the nomenclature of manufactured units, the reduction in the development time of the technological process in comparison with the conventional approach comprises only 10–25% of the total time of technological preparation.


Sign in / Sign up

Export Citation Format

Share Document