scholarly journals Features of modifying properties of chemicals under the action of radiation of different quality: UV light, gamma-radiation and alfa-particles

Author(s):  
P.S. Kuptsova ◽  
◽  
G.P. Zhurakovskaya ◽  
S.V. Belkina ◽  
◽  
...  

Modification of the action of ionizing radiation by chemicals, used both to enhance its action and to weaken it’s known and is widely used in medical radiology. The article presents a comparative analysis of the modifying properties of three chemical radioprotectors (cysteamine, cysteine and cysteamine) when they are simultaneously act with to gama-rays, alpha-particles and ultraviolet radiation on yeast cells. The aim of the study was to compare the features of the manifestation of the properties of chemicals in relation to the protection of cells from UV-like damage when exposed to ionizing radiation or from damage caused by ultraviolet radiation. It was demonstrated that the cysteamine protects cells both from the damaging effects of gama-rays and from ultraviolet radiation, unlike cysteamine and cysteine, which protect cells exclusively from the effects of ionizing radiation. Moreover, cystamine does not change the effect of alpha-particles, which have a high ionization density of the substance, but practically do not cause excitation processes in biological objects. The obtained data indicate that cystamine realizes its protective properties against damage caused by ultraviolet radiation and UV-like damage resulting from the action of gama-rays due to the excitation of molecules or, more precisely, the ultraviolet component of Vavilov-Cherenkov luminescence accompanying the action of ionizing radiation.

1984 ◽  
Vol 23 (02) ◽  
pp. 87-91 ◽  
Author(s):  
K. Flemming

SummaryIn the beginning of medical radiology, only the benefit of ionizing radiation was obvious, and radiation was handled and applied generously. After late effects had become known, the radiation exposure was reduced to doses following which no such effects were found. Thus, it was assumed that one could obtain an optimal medical benefit without inducing any hazard. Later, due to experimental findings, hypotheses arose (linear dose-effect response, no time factor) which led to the opinion that even low and lowest radiation doses were relevant for the induction of late effects. A radiation fear grew, which was unintentionally strengthened by radiation protection decrees: even for low doses a radiation risk could be calculated. Therefore, it was believed that there could still exist a radiation hazard, and the radiation benefit remained in question. If, however, all presently known facts are considered, one must conclude that large radiation doses are hazardous and low doses are inefficient, whereas lowest doses have a biopositive effect. Ionizing radiation, therefore, may cause both, hazard as well as benefit. Which of the two effects prevails is determined by the level of dose.


2021 ◽  
Vol 37 (6) ◽  
pp. 14-24
Author(s):  
N.N. Gessler ◽  
E.P. Isakova ◽  
Yu.I. Deryabina

Using the extremophilic yeast of Yarrowia lipolytica, a new model has been proposed to study the protective properties of stilbene polyphenols, namely resveratrol and pinosylvin, under heat shock. It was shown that a short-term thermal exposure of yeast cells (55 C, 25 min) led to a 40% decrease in the colony-forming ability of the population, a fivefold decrease in the respiration rate, and a growth of cyanide resistance and catalase activity, which indicated the adaptive yeast response to heat stress. Under these conditions, natural biologically active stilbenes, resveratrol and pinosylvin, at a concentration of 10 μM each increased yeast survival by 28% and 13%, respectively. In heat shock, resveratrol additionally raised catalase activity, while pinosylvin increased the cell respiration rate and decreased cyanide resistance and catalase activity. The results obtained indicate that resveratrol acts as a mild pro-oxidant inducing antioxidant protection during the adaptive response of the yeast to heat shock. Unlike resveratrol, pinosylvin increases cell survival stabilizing mitochondrial function and preserving the ATP-generating component of respiration. Yarrowia lipolytica yeast, polyphenols, stilbenoids, resveratrol, pinosylvin, cellular respiratory activity, heat shock, superoxide dismutase, catalase


2021 ◽  
pp. 78-79
Author(s):  
Avni KP Skandhan ◽  
Skandhan KP ◽  
Prasad BS

Our knowledge on X-rays, gamma rays and ultraviolet radiation is ionising . Non-ionising gadget radiation is from Mobile Phone, Laptop, Tablet Smart TV etc. and harmful radiations is from mobile towers . FM radio waves, Microwaves, Visible light are also other forms of non-ionizing radiation.


1996 ◽  
Vol 59 (3) ◽  
pp. 319-321 ◽  
Author(s):  
SUSAN S. SUMNER ◽  
EVA A. WALLNER-PENDLETON ◽  
GLENN W. FRONING ◽  
LA VERNE E. STETSON

Ultraviolet radiation (UV) was effective in destroying Salmonella typhimurium on agar plates and poultry skin. Agar plates inoculated with varying numbers of colony-forming units (CFU) of S. typhimurium (1.2 × 102 to 1.7 × 109) were subjected to different doses of UV light to determine optimal killing. Poultry skin was also inoculated with varying CFU of S. typhimurium per 2 cm2 of skin and subjected to UV light. UV light treatment of inoculated agar plates revealed almost complete elimination (99.9%) of S. typhimurium at 2,000 μW · s · cm−2. Bacterial reduction was less effective on the surface of poultry skin when a 80.5% reduction in S. typhimurium was obtained at 2,000 μW · s · cm−2.


Author(s):  
K. Loganovsky ◽  
◽  
P. Fedirko ◽  
K. Kuts ◽  
D. Marazziti ◽  
...  

Background.Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, including interventional radiological procedures, long-term space flights, and radiation accidents. Objective. The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. Materials and methods. In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM – the leading institution in the field of studying the medical effects of ionizing radiation – were used. Results. The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts, radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerative diseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and in childhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. Conclusions. The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visual system and central nervous system (CNS) radiosensitivity is given. The necessity for further international studies with adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation risk cohorts is justified. The first part of the study currently being published presents the results of the study of the effects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP). Key words: ionizing radiation, cerebroophthalmic effects, neurocognitive deficit, radiation accident, radiation cataracts, macular degeneration.


1993 ◽  
Vol 18 (2) ◽  
pp. 127-136 ◽  
Author(s):  
Andrew A. Arrange ◽  
Tommy J. Phelps ◽  
Robert E. Benoit ◽  
Anthony V. Palumbo ◽  
David C. White

1993 ◽  
Vol 13 (5) ◽  
pp. 2730-2741 ◽  
Author(s):  
J T Anderson ◽  
S M Wilson ◽  
K V Datar ◽  
M S Swanson

A variety of nuclear ribonucleoproteins are believed to associate directly with nascent RNA polymerase II transcripts and remain associated during subsequent nuclear RNA processing reactions, including pre-mRNA polyadenylation and splicing as well as nucleocytoplasmic mRNA transport. To investigate the functions of these proteins by using a combined biochemical and genetic approach, we have isolated nuclear polyadenylated RNA-binding (NAB) proteins from Saccharomyces cerevisiae. Living yeast cells were irradiated with UV light to covalently cross-link proteins intimately associated with RNA in vivo. Polyadenylated RNAs were then selectively purified, and the covalent RNA-protein complexes were used to elicit antibodies in mice. Both monoclonal and polyclonal antibodies which detect a variety of NAB proteins were prepared. Here we characterize one of these proteins, NAB2. NAB2 is one of the major proteins associated with nuclear polyadenylated RNA in vivo, as detected by UV light-induced cross-linking. Cellular immunofluorescence, using both monoclonal and polyclonal antibodies, demonstrates that the NAB2 protein is localized within the nucleus. The deduced primary structure of NAB2 indicates that it is composed of at least two distinct types of RNA-binding motifs: (i) an RGG box recently described in a variety of heterogeneous nuclear RNA-, pre-rRNA-, mRNA-, and small nucleolar RNA-binding proteins and (ii) CCCH motif repeats related to the zinc-binding motifs of the largest subunit of RNA polymerases I, II, and III. In vitro RNA homopolymer/single-stranded DNA binding studies indicate that although both the RGG box and CCCH motifs bind poly(G), poly(U), and single-stranded DNA, the CCCH motifs also bind to poly(A). NAB2 is located on chromosome VII within a cluster of ribonucleoprotein genes, and its expression is essential for cell growth.


2017 ◽  
Vol 67 (2) ◽  
pp. 247-256 ◽  
Author(s):  
Vaida Juškaitė ◽  
Kristina Ramanauskienė ◽  
Vitalis Briedis

Abstract Resveratrol is well known for its antioxidant activity and susceptibility to ultraviolet radiation. Development of formulations providing improved stability and relevant drug delivery of resveratrol is still a challenging task. The aim of this study was to determine protective characteristics of formulated microemulsions by evaluating photoisomerization of resveratrol and to investigate the effects of resveratrol on human keratinocyte cells under oxidative stress caused by ultraviolet radiation. Incorporation of resveratrol into microemulsions resulted in increased photostability of active compounds and the results demonstrated that photodegradation of resveratrol was significantly delayed. Results of biopharmaceutical evaluation in vitro demonstrated that up to 60 % of resveratrol was released from microemulsions within 6 hours under a constant release rate profile. In vivo biological testing confirmed the ability of resveratrol to protect cells from oxidative stress and to increase cell viability. It was concluded that microemulsions might be considered in the development of UV light sensitive compounds.


Sign in / Sign up

Export Citation Format

Share Document