scholarly journals Лазерный GaAs-диод с волноводными квантовыми ямами InGaAs

Author(s):  
Н.В. Дикарева ◽  
Б.Н. Звонков ◽  
И.В. Самарцев ◽  
С.М. Некоркин ◽  
Н.В. Байдусь ◽  
...  

This paper presents the results of research of electrically pumped InGaAs/GaAs laser on waveguide quantum wells, operating at room temperature. The minimum threshold current was 15 A. The stable lasing at a wavelength of 1010 nm was obtained, and the width of the radiation pattern in a plane perpendicular to the layers of the structure was (10 ± 2) angular degrees.

2003 ◽  
Vol 794 ◽  
Author(s):  
V.M. Ustinov ◽  
A.E. Zhukov ◽  
A.R. Kovsh ◽  
N.A. Maleev ◽  
S.S. Mikhrin ◽  
...  

ABSTRACT1.5 micron range emission has been realized using the InAs quantum dots embedded into the metamorphic InGaAs layer containing 20% of InAs grown by MBE on a GaAs substrate. Growth regimes were optimized to reduce significantly the density of dislocations propagating into the active layer from the lattice mismatched interface. 2 mm long InGaAs/InGaAlAs lasers with 10 planes of quantum dots in the active region showed threshold current density about 1.4 kA/cm2 with the external differential efficiency as high as 38%. Lasing wavelength depends on the optical loss being in the 1.44–1.49 micron range at room temperature. On increasing the temperature the wavelength reaches 1.515 micron at 85C while the threshold current characteristic temperature of 55–60K was estimated. High internal quantum efficiency (η>60%)and low internal losses (α=3–4 cm ) were realized. Maximum room temperature output power in pulsed regime as high as 5.5 W for 100 micron wide stripe was demonstrated. Using the same concept 1.3 micron InGaAs/InGaAlAs quantum well lasers were fabricated. The active region contained quantum wells with high (∼40%) indium content which was possible due to the intermediate InGaAs strain relaxation layer. 1 mm stripe lasers showed room temperature threshold current densities about 3.3 kA/cm (λ=1.29 micron) and 400 A/cm2 at 85K. Thus, the use of metamorphic InGaAs layers on GaAs substrate is a very promising approach for increasing the emission wavelength of GaAs based lasers.


2003 ◽  
Vol 799 ◽  
Author(s):  
V. M. Ustinov ◽  
A. E. Zhukov ◽  
A. R. Kovsh ◽  
N. A. Maleev ◽  
S. S. Mikhrin ◽  
...  

ABSTRACT1.5 micron range emission has been realized using the InAs quantum dots embedded into the metamorphic InGaAs layer containing 20% of InAs grown by MBE on a GaAs substrate. Growth regimes were optimized to reduce significantly the density of dislocations propagating into the active layer from the lattice mismatched interface. 2 mm long InGaAs/InGaAlAs lasers with 10 planes of quantum dots in the active region showed threshold current density about 1.4 kA/cm2 with the external differential efficiency as high as 38%. Lasing wavelength depends on the optical loss being in the 1.44–1.49 micron range at room temperature. On increasing the temperature the wavelength reaches 1.515 micron at 85C while the threshold current characteristic temperature of 55–60K was estimated. High internal quantum efficiency (η>60%) and low internal losses (α=3–4 cm-1 ) were realized. Maximum room temperature output power in pulsed regime as high as 5.5 W for 100 micron wide stripe was demonstrated. Using the same concept 1.3 micron InGaAs/InGaAlAs quantum well lasers were fabricated. The active region contained quantum wells with high (∼40%) indium content which was possible due to the intermediate InGaAs strain relaxation layer. 1 mm stripe lasers showed room temperature threshold current densities about 3.3 kA/cm2 (λ=1.29 micron) and 400 A/cm2 at 85K. Thus, the use of metamorphic InGaAs layers on GaAs substrate is a very promising approach for increasing the emission wavelength of GaAs based lasers.


1991 ◽  
Vol 228 ◽  
Author(s):  
T. Egawa ◽  
Y. Hayashi ◽  
T. George ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

ABSTRACTThe heterointerfaces of single quantum wells (SQWs) and the characteristics of SQW lasers on Si substrates grown with Al0.5 Ga0 5As/Al0.55Ga0.45P intermediate layers (AlGaAs/AlGaP ILs) entirely by MOCVD are reported. The surface morphology and the heterointerfaces of SQWs grown on Si substrates with the AlGaAs/AlGaP ILs are smoother than those of the two-step-grown sample. The two-dimensional growth of the AlGaAs/AlGaP ILs on a Si substrate contributes to obtain the smooth heterointerface. The excellent lasing characteristics are obtained by the AlGaAs/AlGaP ILs, which are caused by the smooth heterointerfaces. The lasers grown with the AlGaAs/AlGaP ILs show the averaged threshold current density of 1.83 kA/cm2 and the averaged differential quantum efficiency of 51.9 % under cw condition at room temperature.


1999 ◽  
Vol 607 ◽  
Author(s):  
L. J. Olafsen ◽  
W. W. Bewley ◽  
I. Vurgaftman ◽  
C. L. Felix ◽  
E. H. Aifer ◽  
...  

AbstractW lasers based on type-II antimonides were recently operated nearly to room temperature under the conditions of cw optical pumping. However, the development of electrically pumped mid-infrared lasers has not yet reached the same level of performance. This is largely related to the more challenging task of simultaneously optimizing the doping/transport and gain/optical properties of the devices. Here we report a demonstration of type-II mid-IR diode lasers employing W active quantum wells. Laser structures with 5 or 10 active periods sandwiched between broadened-waveguide separate confinement regions and quaternary optical cladding layers were processed into 100-µm-wide stripes, cleaved into 1-mm-long cavities, and mounted junction side down. For 0.5-1 µs pulses at a repetition rate of 200 Hz, lasing was obtained up to a maximum operating temperature of 310 K, where the emission wavelength was 3.27 µm. The threshold current densities were 110 A/cm2and 25 kA/cm2 at 78 and 310 K, respectively. The characteristic temperature, To, was 48 K for temperatures between 100 and 280 K. Operation in cw mode was obtained to 195 K, with threshold current densities of 63 A/cm2and 1.4 kA/cm2at 78 and 195 K, respectively, with To = 38 K between 78 and 195 K. Significant further improvements in the operating characteristics are expected once the optimization of the designs and fabrication procedures is complete.


1992 ◽  
Vol 281 ◽  
Author(s):  
R. L. Gunshor ◽  
A. V. Nurmikko ◽  
N. Otsuka

ABSTRACTThe use of a nitrogen rf plasma source for p-type ZnSe grown by MBE, has allowed a variety of pn junction based devices to be realized. The pn junctions have been combined with (Zn,Cd)Se quantum wells to implement semiconductor injection lasers, operating in the blue/green portion of the spectrum, which were reported by 3M and the Brown/Purdue group in the summer of 1991. In the past year the field has moved rapidly. In particular, we can now report CW operation at low temperatures as well as pulsed operation at room temperature (490nm) using a Zn(S,Se)-based device configuration. Laser power output per facet for some designs is above 300 mW, and threshold current densities are as low as 1000A/cm 2 at room temperature. Lasing was demonstrated from devices grown on both p and n-type GaAs substrates. X-ray rocking curves of theII-VI regions exhibit FWHM values below 20 arcsec for specific samples. Dislocation densities are less than 105 cm−2, below the threshold of TEM plan view imaging. The blue LEDs provide power outputs in excess of 100μW while exhibiting external quantum efficiencies of 0.1% at room temperature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3092
Author(s):  
Yongjun Tang ◽  
Meixin Feng ◽  
Jianxun Liu ◽  
Shizhao Fan ◽  
Xiujian Sun ◽  
...  

This letter reports room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diodes. Unlike conventional distributed Bragg feedback laser diodes with hundreds of gratings, we employed only a few precisely defined slot gratings to narrow the linewidth and mitigate the negative effects of grating fabrication on the device performance. The slot gratings were incorporated into the ridge of conventional Fabry-Pérot cavity laser diodes. A subsequent wet etching in a tetramethyl ammonium hydroxide solution not only effectively removed the damages induced by the dry etching, but also converted the rough and tilted slot sidewalls into smooth and vertical ones. As a result, the threshold current was reduced by over 20%, and the reverse leakage current was decreased by over three orders of magnitude. Therefore, the room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diode has been successfully demonstrated.


1991 ◽  
Vol 228 ◽  
Author(s):  
R. N. Bhargava

ABSTRACTA short wavelength laser offers unique opportunities in high density optical recording as well as in laser printing. To achieve a compact blue laser, the current effort worldwide is primarily concentrated on achieving well-conducting p-type ZnSe and fabricating quantum well heterostructures so as to achieve a low threshold laser at room temperature. The recent milestone ‘an injection blue laser below room temperature’ gives us confidence that indeed we are on the right path. In photopumped lasers in various II-VI heterostructures, thresholds at room temperature comparable to the theoretical limit have been reported. This not only reinforces that indeed a room temperature injection laser is possible but when combined with earlier electron-beam pumped laser results, a scanned compact laser is also feasible.In recent years several breakthroughs have demonstrated that an infrared emitting GaAs laser can be used to generate blue light through efficient second harmonic generation (SHG) in certain non-linear optical materials. Recent exciting results on SHG of GaAs lasers in KTP grating waveguides resulted in a blue laser with output power in the range of several milliwatts. Alternative schemes such as upconversion lasers and SHG in III-V quantum wells structures are presented.In summary, various efforts to achieve compact blue lasers and their availability in the near future are presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jae-Hyuck Choi ◽  
William E. Hayenga ◽  
Yuzhou G. N. Liu ◽  
Midya Parto ◽  
Babak Bahari ◽  
...  

AbstractTopological insulator lasers (TILs) are a recently introduced family of lasing arrays in which phase locking is achieved through synthetic gauge fields. These single frequency light source arrays operate in the spatially extended edge modes of topologically non-trivial optical lattices. Because of the inherent robustness of topological modes against perturbations and defects, such topological insulator lasers tend to demonstrate higher slope efficiencies as compared to their topologically trivial counterparts. So far, magnetic and non-magnetic optically pumped topological laser arrays as well as electrically pumped TILs that are operating at cryogenic temperatures have been demonstrated. Here we present the first room temperature and electrically pumped topological insulator laser. This laser array, using a structure that mimics the quantum spin Hall effect for photons, generates light at telecom wavelengths and exhibits single frequency emission. Our work is expected to lead to further developments in laser science and technology, while opening up new possibilities in topological photonics.


2009 ◽  
Vol 26 (6) ◽  
pp. 064211 ◽  
Author(s):  
Chen Ting ◽  
Hong Tao ◽  
Pan Jiao-Qing ◽  
Chen Wei-Xi ◽  
Cheng Yuan-Bing ◽  
...  

1993 ◽  
Vol 22 (5) ◽  
pp. 479-484 ◽  
Author(s):  
R. D. Feldman ◽  
T. D. Harris ◽  
J. E. Zucker ◽  
D. Lee ◽  
R. F. Austin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document