scholarly journals Особенности перколяционной схемы перестройки колебательного спектра сплава с составом для Ga-=SUB=-1-x-=/SUB=-Al-=SUB=-x-=/SUB=-P

2018 ◽  
Vol 60 (4) ◽  
pp. 779
Author(s):  
С.П. Козырев

AbstractSpecific features of the properties of Ga–P lattice vibrations have been investigated using the percolation model of a mixed Ga_1 – x Al_ x P crystal (alloy) with zero lattice mismatch between binary components of the alloy. In contrast to other two-mode alloy systems, in Ga_1 – x Al_ x P a percolation splitting of δ ~ 13 cm^–1 is observed for the low-frequency mode of GaP-like vibrations. An additional GaP mode (one of the percolation doublet components) split from the fundamental mode is observed for the GaP-rich alloy, which coincides in frequency with the gap corresponding to the zero density of one-phonon states of the GaP crystal. The vibrational spectrum of impurity Al in the GaP crystal has been calculated using the theory of crystal lattice dynamics. Upon substitution of lighter Al for the Ga atom, the calculated spectrum includes, along with the local mode, a singularity near the gap with the zero density of phonon states of the GaP crystal, which coincides with the mode observed experimentally at a frequency of 378 cm^–1 in the Ga_1 – x Al_ x P ( x < 0.4) alloy.

1989 ◽  
Vol 03 (04) ◽  
pp. 611-615 ◽  
Author(s):  
V. R. BELOSLUDOV ◽  
M. Yu. LAVRENTIEV ◽  
S. A. SYSKIN

A simple model of interatomic interactions in YBa 2 Cu 3 O 7, which takes into account long-range Coulombic interaction and short-range repulsion of the Born-Mayer type, is presented. On the basis of this model the calculation of lattice vibrations in YBa 2 Cu 3 O 7 is performed, and phonon dispersion curves and density of phonon states are found. A comparison with experimental data on IR and Raman spectra is presented.


1973 ◽  
Vol 27 (1) ◽  
pp. 22-26 ◽  
Author(s):  
S. M. Craven ◽  
F. F. Bentley ◽  
D. F. Pensenstadler

The low frequency infrared spectra from 450 to 75 cm−1 of seven oximes and five aldoximes have been recorded for pure samples and for dilute solutions in cyclohexane. An intense characteristic band is present in the solution spectra at 367 ± 10 cm−1. This characteristic band shifts to 275 ± 10 cm−1 in the spectra of the OD compounds. The 367 ± 10 cm−1 and 275 ± 10 cm−1 bands are assigned to OH and OD torsional vibrations. A comparison of the solution spectra with spectra of the solid samples indicated that the OH … N hydrogen bond stretch of oximes and aldoximes occurs in 300 to 200 cm−1 region. Strong bands also are present in 140 to 100 cm−1 region which are due to OH … N bending modes or perhaps lattice vibrations.


1990 ◽  
Vol 45 (3-4) ◽  
pp. 536-540
Author(s):  
Mariusz Máckowiak ◽  
Costas Dimitropoulos

Abstract The second-order Raman phonon process for a multilevel spin system is shown to give a quadru-polar spin-lattice relaxation rate T1-1varying as T5 at very low temperatures. This relaxation rate for quadrupole spins is similar to the one discussed for a paramagnetic spin system having a multilevel ground state. The temperature dependence of T1 is discussed on the basis of some simplifying assumptions about the nature of the lattice vibrations in the Debye approximation. This type of relaxation process has been observed below 20 K in tetramethylammonium hydrogen bis-trichloroacetate for the 35Cl T1-1 . Below 20 K the NQR frequency in the same crystal reveals a T4 temperature dependence due to the induced modulations of the vibrational and librational coordinates by the low-frequency acoustic phonons.


1989 ◽  
Vol 111 (3) ◽  
pp. 185-191 ◽  
Author(s):  
C. D. Bertram ◽  
C. J. Raymond ◽  
K. S. A. Butcher

To determine whether self-excited oscillations in a Starling resistor are relevant to physiological situations, a collapsible tube conveying an aqueous flow was externally pressurized along only a central segment of its unsupported length. This was achieved by passing the tube through a shorter and wider collapsible sleeve which was mounted in Starling resistor fashion in a pressure chamber. The tube size and material, and all other experimental parameters, were as used in our previous Starling resistor studies. Both low- and high-frequency self-excited oscillations were observed, but the low-frequency oscillations were sensitive to the sleeve type and length relative to unsupported distance. Pressure-flow characteristics showed multiple oscillatory modes, which differed quantitatively from those observed in comparable Starling resistors. Slow variation of driving pressure gave differing behavior according to whether the pressure was rising or falling, in accord with the hysteresis noted on the characteristics and in the tube law. The results are discussed in terms of the various possible mechanisms of collapsible tube instability, and reasons are presented for the absence of the low-frequency mode under most physiological circumstances.


1985 ◽  
Vol 28 (7) ◽  
pp. 2302
Author(s):  
M. A. Makowski ◽  
G. A. Emmert

2000 ◽  
Vol 623 ◽  
Author(s):  
R.K. Soni ◽  
Anju Dixit ◽  
R. S. Katiyar ◽  
A. Pignolet ◽  
K.M. Satyalakshmi ◽  
...  

AbstractLight scattering investigations are carried out on BaBi4Ti4O15 (BBiT) which is a member of the Bi-layer structure ferroelectric oxide with n = 4. The BBiT thin films, thickness ∼ 300 nm, were grown on epitaxial conducting LaNiO3 electrodes on epitaxial buffer layers on (100) silicon by pulsed laser deposition. Micro-Raman measurements performed on these films reveal a sharp low-frequency mode at 51 cm−1 along with broad highfrequeficy modes corresponding to other lattice vibrations including TiO6 octahedra. No temperature dependence of the low frequency mode is seen while a weak dependence of the broad high frequency vibrations are observed in the mixed oriented regions. Raman polarization carried out at room temperature indicates that the prominent modes have Alg and Eg symmetries in the BaBi4Ti4O15 thin films.


1974 ◽  
Vol 52 (11) ◽  
pp. 2005-2015 ◽  
Author(s):  
P. T. T. Wong

Detailed measurements of the low-frequency Raman spectra of the crystals of [ZnPy2Cl2] and [ZnPy2Br2] at room temperature, where Py is the pyridine molecule, and the far-infrared spectrum of the crystal of [ZnPy2Cl2] at liquid nitrogen temperature have been made. The vibrational frequencies for the single molecule and for the complete crystal of these two complexes have been calculated and compared with the observed spectra, and the distribution of the potential energy of the normal modes has also been calculated to assist the refinement of the calculation and the interpretation of the spectra. Apparently, the skeletal Zn–ligand vibrations of the individual molecule couple with the lattice vibrations in the crystal, except for the normal modes at 326 cm−1 for [ZnPy2Cl2] and at 250 cm−1 for [ZnPy2Br2] which are dominated by the Zn–halogen stretching vibrations. Reasonably good Zn–ligand stretching force constants were obtained. The nature of the coordination bonds of these complexes has been discussed.


Sign in / Sign up

Export Citation Format

Share Document