scholarly journals Локальные и интегральные свойства квазиодномерного сверхпроводника в режиме квантовых флуктуаций параметра порядка

2021 ◽  
Vol 63 (9) ◽  
pp. 1233
Author(s):  
К.Ю. Арутюнов ◽  
Я.С. Лехтинен ◽  
Д.О. Трефилов ◽  
А.А. Радкевич ◽  
А.Г. Семенов ◽  
...  

Utilization of superconducting materials for the new generation of nanoelectronic devices seems extremely tempting from the point of view of the absence of Joule heating. However, in small systems, the role of fluctuations can be very significant. In this work, the transport properties of thin superconducting titanium nanostructures were studied experimentally and theoretically. It has been shown that quantum fluctuations of the order parameter have a dif-ferent impact on integral and local characteristics of a quasi-one-dimensional superconductor. In sufficiently thin nanowires, a finite electrical resistance can be observed at the lowest tem-peratures, while the tunneling current-voltage characteristics exhibit only slightly broadened gap singularity and a finite Josephson current. The observation is of fundamental importance for understanding the phenomenon of mesoscopic superconductivity and should be taken into account when designing nanometer scale cryoelectronic devices.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Mikhail B. Belonenko ◽  
Nikolay G. Lebedev ◽  
Alexander V. Zhukov ◽  
Natalia N. Yanyushkina

We study the electron spectrum and the density of states of long-wave electrons in the curved graphene nanoribbon based on the Dirac equation in a curved space-time. The current-voltage characteristics for the contact of nanoribbon-quantum dot have been revealed. We also analyze the dependence of the specimen properties on its geometry.


2013 ◽  
Vol 591 ◽  
pp. 54-60
Author(s):  
Xiu Li Fu ◽  
Yan Xu Zang ◽  
Zhi Jian Peng

The effect of WO3doping on microstructural and electrical properties of ZnO-Pr6O11based varistor materials was investigated. The doped WO3plays a role of inhibitor in ZnO grain growth, resulting in decreased average grain size from 2.68 to 1.68 μm with increasing doping level of WO3from 0 to 0.5 mol%. When the doping level of WO3was lower than 0.05 mol%, the nonlinear current-voltage characteristics of the obtained varistors could be improved significantly with increasing amount of WO3doped. But when the doping level of WO3became higher, their nonlinear current-voltage performance would be dramatically deteriorated when more WO3was doped. The optimum nonlinear coefficient, varistor voltage, and leakage current of the samples were about 13.71, 710 V/mm and 13 μA/cm2, respectively, when the doping level of WO3was in the range from 0.03 to 0.05 mol%.


2019 ◽  
Vol 970 ◽  
pp. 75-81
Author(s):  
Alexey Zavgorodniy ◽  
Aitbek Aimukhanov ◽  
Assylbek Zeinidenov ◽  
Galina Vavilova

The role of spin states in the process of charge carrier transport in copper phthalocyanine (CuPc) nanowires has been established. According to the data obtained, CuPc nanowires are in the η-phase. The current-voltage characteristics (IVC) of a photosensitive cell based on CuPc nanowires in a magnetic field are investigated. As a result of experiments, it was found that applying an external magnetic field, the spins of two positively charged polarons are oriented in one direction. The channel of formation of the bipolaron is blocked. As a result, a decrease in the short-circuit current of the photosensitive cell is observed by more than 61%.


2012 ◽  
Vol 1426 ◽  
pp. 365-370
Author(s):  
Francisco Temoltzi Avila ◽  
Andrey Kosarev ◽  
Ismael Cosme ◽  
Mario Moreno ◽  
P. Roca y Cabarrocas

ABSTRACTThe dark current-voltage characteristics of PIN structures are studied and analyzed for PV samples as for integral device without taking account the performance of the different elements typically used in equivalent circuit model such as diode n-factor, shunt and series resistances. The contribution of all these elements is very important in the development of devices because they determine the performance characteristics. In this work we have studied and compared the temperature dependence of current-voltage characteristics in μc-Si:H and pm-Si:H p-i-n structures having approximately the same efficiencies with emphasis on their different electronic characteristics such as shunt (Rsh) and series (Rs) resistance, ideality factor (n), and the saturation current (Is), which give us some ideas on role of these elements. In the pm-Si:H cell it was observed that the Rs increases with the increase of the temperature in contrast to the μc-Si:H structures, where the series resistance reduces with temperature change from T = 300 up to 480K. In both the pm-Si:H and μc-Si:H samples Rshreduces with temperature change from 300 up to 480 K. The ideality factor in the pm-Si:H structure shows an increase, and in μc-Si:H a reduction, when temperature increases. Saturation current in both cases increases with temperature as it was expected. From the saturation current it was obtained the build-in potential. Analysis behavior of both saturation current and n-factor with temperature shows that build-in potential increases with temperature in the pm-Si:H, but reduces in μc-Si:H structure.


Sign in / Sign up

Export Citation Format

Share Document