scholarly journals Механизм термической ионизации уротропина на поверхности интерметаллида NaAu-=SUB=-x-=/SUB=-

2022 ◽  
Vol 92 (3) ◽  
pp. 481
Author(s):  
М.В. Кнатько ◽  
М.Н. Лапушкин

Thermal ionization of methenamine (C6H12N4) on the surface of the NaAux intermetallic compound has been studied. It has been established that the processes of decomposition, desorption and ionization of adsorbed compounds, thermally stimulated on the surface, proceed due to the accumulation of energy at the degrees of freedom of the adsorption complex, including the adsorbed compound and a solid, by the mechanism of monomolecular decomposition reactions. In this case, the decomposition of the adsorption complex is accompanied by the desorption of ions that are not in thermal equilibrium with the solid. The uniformity of the temperature dependences of the ion current and their distribution over two groups allowed us to conclude that ions are desorbed from the surface, which correspond to the decays of individual adsorbed molecules, as well as the decays of dimers formed on the surface. The decay of methenamine molecules during thermal ionization occurs in the same way as their decay in vacuum during electron ionization, which indicates the preservation of the bulk structure of methenamine molecules during adsorption and a significant lifetime of the excited state of compounds on NaAux.

A new qualitative conception of the detonation mechanism in condensed explosives has been developed on the basis of experimental and numerical modelling data. According to the conception the mechanism consists of two stages: non-equilibrium and equilibrium. The mechanism regularities are explosive characteristics and they do not depend on explosive charge structure (particle size, nature of filler in the pores, explosive state, liquid or solid, and so on). The tremendous rate of loading inside the detonation wave shock discontinuity zone ( ca. 10 -13 s) is responsible for the origin of the non-equilibrium stage. For this reason, the kinetic part of the shock compression energy is initially absorbed only by the translational degrees of freedom of the explosive molecules. It involves the appearance of extremely high translational temperatures for the polyatomic molecules. In the course of the translational-vibrational relaxation processes (that is, during the first non-equilibrium stage of ca. 10 -10 s time duration) the most rapidly excited vibrational degrees of freedom can accumulate surplus energy, and the corresponding bonds decompose faster than behind the front at the equilibrium stage. In addition to this process, the explosive molecules become electronically excited and thermal ionization becomes possible inside the translational temperature overheat zone. The molecules thermal decomposition as well as their electronic excitation and thermal ionization result in some active particles (radicals, ions) being created. The active particles and excited molecules govern the explosive detonation decomposition process behind the shock front during the second equilibrium stage. The activation energy is usually low, so that during this stage the decomposition proceeds extremely rapidly. Therefore the experimentally observed dependence of the detonation decomposition time for condensed explosives is rather weak.


Author(s):  
Jean Zinn-Justin

The functional integral representation of the density matrix at thermal equilibrium in non-relativistic quantum mechanics (QM) with many degrees of freedom, in the grand canonical formulation is introduced. In QM, Hamiltonians H(p,q) can be also expressed in terms of creation and annihilation operators, a method adapted to the study of perturbed harmonic oscillators. In the holomorphic formalism, quantum operators act by multiplication and differentiation on a vector space of analytic functions. Alternatively, they can also be represented by kernels, functions of complex variables that correspond in the classical limit to a complex parametrization of phase space. The formalism is adapted to the description of many-body boson systems. To this formalism corresponds a path integral representation of the density matrix at thermal equilibrium, where paths belong to complex spaces, instead of the more usual position–momentum phase space. A parallel formalism can be set up to describe systems with many fermion degrees of freedom, with Grassmann variables replacing complex variables. Both formalisms can be generalized to quantum gases of Bose and Fermi particles in the grand canonical formulation. Field integral representations of the corresponding quantum partition functions are derived.


1989 ◽  
Vol 4 (5) ◽  
pp. 1140-1142 ◽  
Author(s):  
L. Anthony ◽  
B. Fultz

Rapidly quenched powders of Fe3Al were subjected to thermal annealings at temperatures well below the critical temperatures for B2 and DO3 ordering. X-ray diffractometry was used to measure the subsequent evolution of B2 and DO3 long-range order. It was found that the relative rates of change of B2 and DO3 order parameters were temperature dependent; hence at different temperatures the alloy passed through different states of order en route to thermal equilibrium. These temperature dependences of “kinetic paths” can be understood in terms of a theory of kinetic paths based on the kinetic master equation. The theory indicates that the temperature dependence of the observed kinetic paths originates from having first-nearest-neighbor interactions that are stronger than second-nearest-neighbor interactions. This seems consistent with previous thermodynamic analyses of critical temperatures of Fe3Al.


1960 ◽  
Vol 38 (3) ◽  
pp. 458-476 ◽  
Author(s):  
A. Vallance Jones ◽  
D. M. Hunten

Spectra of sunlit auroral rays were obtained from Saskatoon during the auroras of September 3/4 and 4/5, 1958. The resolution of these spectra was sufficiently high to enable measurements to be made of the relative intensities of the lines of the 0–0 first negative [Formula: see text] band as well as the relative intensities of bands of the Δυ = −1 sequence of this system. An analysis of the rotational line intensities shows they are consistent with an excitation process in which [Formula: see text] ions in thermal equilibrium with the atmosphere at 2200 °K fluoresce under the influence of solar radiation. The vibrational intensity distribution also is consistent with a fluorescent excitation from a state of thermal equilibrium at about 2050 °K. It is shown that the results are not consistent with a fluorescent excitation process in which the rotational and vibrational degrees of freedom of the [Formula: see text] ions come into radiative equilibrium with the solar radiation. Earlier conclusions that radiative equilibrium did hold for vibration are shown to be in error as a result of the high rotational temperature and the low dispersion used. It is concluded that the destruction of [Formula: see text] ions as a result of dissociative recombination proceeds sufficiently fast to prevent any significant approach to radiative equilibrium. This investigation provides a strong indication that the kinetic temperature of a sunlit auroral ray (perhaps in the 400–500 km region) is in the neighborhood of 2000 °K. This may be somewhat higher than the temperature of the normal atmosphere at this height.


1992 ◽  
Vol 70 (7) ◽  
pp. 1932-1938 ◽  
Author(s):  
Hemant K. Sinha ◽  
S. Muralidharan ◽  
Keith Yates

Electric field induced change in the absorption spectrum (electrochromism) has been employed to obtain the ground and excited state dipole moments of planar and sterically hindered (twisted) p-N,N-(dimethylamino)benzonitriles in dioxane solution. These studies support the twisted intramolecular charge transfer (TICT) hypothesis and provide additional insight to the TICT concept. The charge transfer nature of the excited state has been found to directly depend on the torsional angle of the N,N-dimethylamino group with respect to the benzonitrile moiety. It is suggested that solvent coupling is essential to initiate twisting by affecting the intramolecular degrees of freedom and the existence of the highly dipolar excited state is a result of such twisting of the donor–acceptor bond. Theoretical calculations have been performed to explain the observed changes in dipole moment values.


Sign in / Sign up

Export Citation Format

Share Document