scholarly journals Особенности структуры и свойств тонких пленок цирконата-титаната свинца с сильно неоднородным распределением состава по толщине

Author(s):  
Д.М. Долгинцев ◽  
М.В. Старицын ◽  
В.П. Пронин ◽  
Е.Ю. Каптелов ◽  
С.В. Сенкевич ◽  
...  

Two-layer thin lead zirconate titanate films in which the lead content differed by 20% were formed by radio-frequency magnetron deposition under variation of the working gas pressure. A comparative study of the phase state, composition, and dielectric properties of bilayer structures differing in the sequence of layers deposition has been carried out. It is shown that, depending on the order of the layers, the conditions of crystallization of the perovskite phase and the unipolar properties of the films change significantly.

2010 ◽  
Vol 105-106 ◽  
pp. 355-358 ◽  
Author(s):  
Z.L. Zhu ◽  
Dong Yan Tang ◽  
X.H. Zhang ◽  
Y.J. Qiao

To prevent the potential cracking of gel fibers, La modified lead zirconate titanate (PLZT) ceramic fibers with diameter within 50µm were achieved by embedding into PLZT powders during the heat treatment. Then the 1-3 PLZT fiber/interpenetrating polymer network (IPN) piezoelectric composites were prepared by casting the IPN precursors onto the well aligned ceramic fibers. The influences of the heating temperatures and La amounts on the dielectric constant, dielectric loss with frequencies and piezoelectric constant of PLZT were investigated in detail. The morphologies of fibers and composites were observed by biological microscope. And also, the dielectric constant of PLZT fibers and PLZT fiber/IPN piezoelectric composites were detected.


2015 ◽  
Vol 9 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Rashmi Gupta ◽  
Seema Verma ◽  
Deepa Singh ◽  
Karan Singh ◽  
Krishen Bamzai

The solid solutions of lead nickel niobate (PNN) and lead zirconate titanate (PZT), with general formula 0.5 Pb(NixNb1-x)O3-0.5 PZT, where x = 1/3, 1/2 and 2/3 and Zr/Ti = 50/50, were prepared by conventional solid state reaction technique. The perovskite phase formation and morphology were examined by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. From microstructure investigations, the grain size was found to lie in the range of 0.2-1.1 ?m. Diffuse phase transition and dielectric relaxation was obtained for all three compositions. The nature of dielectric relaxation was investigated through complex plane Argand plot or Cole-Cole plot. It was found that both grains as well as grain boundary contribute to dielectric relaxation. A direct correlation between the grain size and electrical properties was obtained. The remnant polarization and grain size were found to follow the inverse relationship. The inverse relationship between remnant polarization and grain size was established.


2012 ◽  
Vol 620 ◽  
pp. 486-490
Author(s):  
Shafiza Afzan Sharif ◽  
Julie Juliewatty Mohamed ◽  
W.A.W. Yusoff

Lead zirconate titanate Pb (Zr0.52Ti0.48)O3, (PZT) ceramic was successfully prepared from the mixture of commercial PbO, TiO2and ZrO2powders using planetary ball mill at room temperature. The phase formation and microstructure of the milled powders were characterized using X-ray diffraction (XRD) and Scanning Electron Microscope (SEM). XRD results indicated that the perovskite phase of PZT was formed from the mixture of starting materials after milling for 40 h. The grain sizes of the powders have been estimated from the SEM images to be ~200 nm. The compacted PZT samples were then sintered at 950 °C for 1 h. The samples were characterized by XRD and SEM, meanwhile the density was measured by Archimedes principle. XRD analysis on the sintered samples revealed the formation of single phase Pb (Zr0.52Ti0.48)O3ceramics while the SEM images estimated the grain size to be ~2 µm. The relative density of the obtained sintered PZT ceramics was measured to be approximately 99.93 % of the theoretical density. The results hence indicate that planetary ball mill is an effective preparatory technique to improve the sinterability of PZT ceramics.


2006 ◽  
Vol 326-328 ◽  
pp. 613-616
Author(s):  
Dae Jin Yang ◽  
Seong Je Cho ◽  
Jong Oh Kim ◽  
Won Youl Choi

Lead zirconate titanate (Pb(Zr0.48Ti0.52)O3 or PZT) films were grown on platinized silicon wafers (Pt/SiO2/Si) by d.c. reactive sputtering method with multi targets. The Pb content of PZT films has been widely recognized as affecting not only the phase formation and microstructure but also the dielectric and ferroelectric properties. Pb content of PZT films was controlled by the variation of Pb target current. The relation between Pb content and Pb target current was expressed as y=0.89x-11.09. The x and y are Pb target current and Pb content, respectively. The pyrochlore phase was transformed to perovskite phase as Pb content was increased. This phase transformation improved the ferroelectric properties of PZT films. In PZT films with perovskite phase, fatigue properties were not improved with excess Pb content. Fatigue properties of PZT films began to be fatigued after 106 switching cycles and coincided with the typical PZT fatigue behavior. Excess Pb content (Pb vacancy) did not affect the fatigue properties of PZT films.


2015 ◽  
Vol 804 ◽  
pp. 21-24
Author(s):  
Ladapak Chumprasert ◽  
Narit Funsueb ◽  
Apichart Limpichaipanit ◽  
Athipong Ngamjarurojana

Barium titanate (BT) additive in lanthanum modified lead zirconate titanate (PLZT) was used to modify the microstructure and resultant properties of (1-x) PLZT– x BT where x= 0, 0.05, 0.10, 0.15, 0.20 and 0.25. Oxide powders were synthesized by mixed oxide synthetic route via a rapid vibro-milling technique. All of samples were sintered at 1275°C with the soaking time of 4 h. The ceramic samples were investigated for phase formation and evolution, dielectric behavior and ferroelectric properties. Introduction of BT in PLZT lattice resulted in ferroelectric tetragonal-rhombohedral structure, and further increase of BT content resulted in stabilizing the ferroelectric tetragonal perovskite phase. Dielectric behavior and ferroelectric properties were examined as a function of BT content.


Sign in / Sign up

Export Citation Format

Share Document