scholarly journals Направление диффузионного потока галлия при осаждении на поверхность с регулярными массивами отверстий

Author(s):  
В.Г. Дубровский

Self-catalyzed growth of GaAs and GaP nanowires by molecular beam epitaxy is often performed on processed SiOx/Si(111) substrates with regular arrays of lithographically defined holes. Ga droplets form in the holes during Ga pre-deposition step in the absence of As supply. It was considered evident that the Ga diffusion flux in such a process is directed from the oxide surface into the holes. Here, we show that it is not always true and that the diffusion flux can change its direction depending on the growth conditions. Our model can be useful for modeling the incubation and growth times of group III droplets within the holes and explains long nucleation delays of the droplets.

2006 ◽  
Vol 527-529 ◽  
pp. 1489-1492 ◽  
Author(s):  
Donat J. As ◽  
S. Potthast ◽  
J. Schörmann ◽  
S.F. Li ◽  
K. Lischka ◽  
...  

Cubic GaN, AlxGa1-xN/GaN and InyGa1-yN/GaN multiple quantum well (MQW) layers were grown by plasma assisted molecular beam epitaxy on 200 &m thick free standing 3C-SiC substrates. The influence of the surface roughness of the 3C-SiC substrates and the influence of metal coverage during growth are discussed. Optimum growth conditions of c-III nitrides exist, when a one monolayer Ga coverage is formed at the growing surface. The improvement of the structural properties of cubic III-nitride layers and multilayers grown on 3C-SiC substrates is demonstrated by 1 μm thick c-GaN layers with a minimum x-ray rocking curve width of 16 arcmin, and by c-AlGaN/GaN and c-InGaN/GaN MQWs which showed up to five satellite peaks in X-ray diffraction, respectively.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3447
Author(s):  
Sergey V. Sorokin ◽  
Pavel S. Avdienko ◽  
Irina V. Sedova ◽  
Demid A. Kirilenko ◽  
Valery Yu. Davydov ◽  
...  

Development of molecular beam epitaxy (MBE) of two-dimensional (2D) layered materials is an inevitable step in realizing novel devices based on 2D materials and heterostructures. However, due to existence of numerous polytypes and occurrence of additional phases, the synthesis of 2D films remains a difficult task. This paper reports on MBE growth of GaSe, InSe, and GaTe layers and related heterostructures on GaAs(001) substrates by using a Se valve cracking cell and group III metal effusion cells. The sophisticated self-consistent analysis of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy data was used to establish the correlation between growth conditions, formed polytypes and additional phases, surface morphology and crystalline structure of the III–VI 2D layers. The photoluminescence and Raman spectra of the grown films are discussed in detail to confirm or correct the structural findings. The requirement of a high growth temperature for the fabrication of optically active 2D layers was confirmed for all materials. However, this also facilitated the strong diffusion of group III metals in III–VI and III–VI/II–VI heterostructures. In particular, the strong In diffusion into the underlying ZnSe layers was observed in ZnSe/InSe/ZnSe quantum well structures, and the Ga diffusion into the top InSe layer grown at ~450 °C was confirmed by the Raman data in the InSe/GaSe heterostructures. The results on fabrication of the GaSe/GaTe quantum well structures are presented as well, although the choice of optimum growth temperatures to make them optically active is still a challenge.


1997 ◽  
Vol 26 (11) ◽  
pp. 1266-1269 ◽  
Author(s):  
J. D. Mackenzie ◽  
L. Abbaschian ◽  
C. R. Abernathy ◽  
S. M. Donovan ◽  
S. J. Pearton ◽  
...  

Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 784-794 ◽  
Author(s):  
S. DAS SARMA

We review recent developments in our understanding of Molecular Beam Epitaxy as a kinetically rough growth phenomenon. It is argued that while the most general growth conditions lead to generic growth universality, actual growth conditions allow a complex interplay of several different dynamic universality classes producing rich crossover behavior determined by growth temperature, incident flux rate, and local solid state physics and chemistry of the growing material. Possible coarse-grained continuum growth equations which may be applicable to Molecular Beam Epitaxy are discussed.


1999 ◽  
Vol 4 (S1) ◽  
pp. 858-863
Author(s):  
Huajie Chen ◽  
A. R. Smith ◽  
R. M. Feenstra ◽  
D. W. Greve ◽  
J. E. Northrup

InGaN alloys with indium compositions ranging from 0–40% have been grown by molecular beam epitaxy. The dependence of the indium incorporation on growth temperature and group III/group V ratio has been studied. Scanning tunneling microscopy images, interpreted using first-principles theoretical computations, show that there is strong indium surface segregation on InGaN. Based on this surface segregation, a qualitative model is proposed to explain the observed indium incorporation dependence on the growth parameters.


Sign in / Sign up

Export Citation Format

Share Document