scholarly journals Exploring Eating Disorder Topics on Twitter: Machine Learning Approach (Preprint)

2020 ◽  
Author(s):  
Sicheng Zhou ◽  
Yunpeng Zhao ◽  
Jiang Bian ◽  
Ann F Haynos ◽  
Rui Zhang

BACKGROUND Eating disorders (EDs) are a group of mental illnesses that have an adverse effect on both mental and physical health. As social media platforms (eg, Twitter) have become an important data source for public health research, some studies have qualitatively explored the ways in which EDs are discussed on these platforms. Initial results suggest that such research offers a promising method for further understanding this group of diseases. Nevertheless, an efficient computational method is needed to further identify and analyze tweets relevant to EDs on a larger scale. OBJECTIVE This study aims to develop and validate a machine learning–based classifier to identify tweets related to EDs and to explore factors (ie, topics) related to EDs using a topic modeling method. METHODS We collected potential ED-relevant tweets using keywords from previous studies and annotated these tweets into different groups (ie, ED relevant vs irrelevant and then promotional information vs laypeople discussion). Several supervised machine learning methods, such as convolutional neural network (CNN), long short-term memory (LSTM), support vector machine, and naïve Bayes, were developed and evaluated using annotated data. We used the classifier with the best performance to identify ED-relevant tweets and applied a topic modeling method—Correlation Explanation (CorEx)—to analyze the content of the identified tweets. To validate these machine learning results, we also collected a cohort of ED-relevant tweets on the basis of manually curated rules. RESULTS A total of 123,977 tweets were collected during the set period. We randomly annotated 2219 tweets for developing the machine learning classifiers. We developed a CNN-LSTM classifier to identify ED-relevant tweets published by laypeople in 2 steps: first relevant versus irrelevant (F<sub>1</sub> score=0.89) and then promotional versus published by laypeople (F<sub>1</sub> score=0.90). A total of 40,790 ED-relevant tweets were identified using the CNN-LSTM classifier. We also identified another set of tweets (ie, 17,632 ED-relevant and 83,557 ED-irrelevant tweets) posted by laypeople using manually specified rules. Using CorEx on all ED-relevant tweets, the topic model identified 162 topics. Overall, the coherence rate for topic modeling was 77.07% (1264/1640), indicating a high quality of the produced topics. The topics were further reviewed and analyzed by a domain expert. CONCLUSIONS A developed CNN-LSTM classifier could improve the efficiency of identifying ED-relevant tweets compared with the traditional manual-based method. The CorEx topic model was applied on the tweets identified by the machine learning–based classifier and the traditional manual approach separately. Highly overlapping topics were observed between the 2 cohorts of tweets. The produced topics were further reviewed by a domain expert. Some of the topics identified by the potential ED tweets may provide new avenues for understanding this serious set of disorders.

10.2196/18273 ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. e18273
Author(s):  
Sicheng Zhou ◽  
Yunpeng Zhao ◽  
Jiang Bian ◽  
Ann F Haynos ◽  
Rui Zhang

Background Eating disorders (EDs) are a group of mental illnesses that have an adverse effect on both mental and physical health. As social media platforms (eg, Twitter) have become an important data source for public health research, some studies have qualitatively explored the ways in which EDs are discussed on these platforms. Initial results suggest that such research offers a promising method for further understanding this group of diseases. Nevertheless, an efficient computational method is needed to further identify and analyze tweets relevant to EDs on a larger scale. Objective This study aims to develop and validate a machine learning–based classifier to identify tweets related to EDs and to explore factors (ie, topics) related to EDs using a topic modeling method. Methods We collected potential ED-relevant tweets using keywords from previous studies and annotated these tweets into different groups (ie, ED relevant vs irrelevant and then promotional information vs laypeople discussion). Several supervised machine learning methods, such as convolutional neural network (CNN), long short-term memory (LSTM), support vector machine, and naïve Bayes, were developed and evaluated using annotated data. We used the classifier with the best performance to identify ED-relevant tweets and applied a topic modeling method—Correlation Explanation (CorEx)—to analyze the content of the identified tweets. To validate these machine learning results, we also collected a cohort of ED-relevant tweets on the basis of manually curated rules. Results A total of 123,977 tweets were collected during the set period. We randomly annotated 2219 tweets for developing the machine learning classifiers. We developed a CNN-LSTM classifier to identify ED-relevant tweets published by laypeople in 2 steps: first relevant versus irrelevant (F1 score=0.89) and then promotional versus published by laypeople (F1 score=0.90). A total of 40,790 ED-relevant tweets were identified using the CNN-LSTM classifier. We also identified another set of tweets (ie, 17,632 ED-relevant and 83,557 ED-irrelevant tweets) posted by laypeople using manually specified rules. Using CorEx on all ED-relevant tweets, the topic model identified 162 topics. Overall, the coherence rate for topic modeling was 77.07% (1264/1640), indicating a high quality of the produced topics. The topics were further reviewed and analyzed by a domain expert. Conclusions A developed CNN-LSTM classifier could improve the efficiency of identifying ED-relevant tweets compared with the traditional manual-based method. The CorEx topic model was applied on the tweets identified by the machine learning–based classifier and the traditional manual approach separately. Highly overlapping topics were observed between the 2 cohorts of tweets. The produced topics were further reviewed by a domain expert. Some of the topics identified by the potential ED tweets may provide new avenues for understanding this serious set of disorders.


2021 ◽  
Vol 11 (10) ◽  
pp. 4443
Author(s):  
Rokas Štrimaitis ◽  
Pavel Stefanovič ◽  
Simona Ramanauskaitė ◽  
Asta Slotkienė

Financial area analysis is not limited to enterprise performance analysis. It is worth analyzing as wide an area as possible to obtain the full impression of a specific enterprise. News website content is a datum source that expresses the public’s opinion on enterprise operations, status, etc. Therefore, it is worth analyzing the news portal article text. Sentiment analysis in English texts and financial area texts exist, and are accurate, the complexity of Lithuanian language is mostly concentrated on sentiment analysis of comment texts, and does not provide high accuracy. Therefore in this paper, the supervised machine learning model was implemented to assign sentiment analysis on financial context news, gathered from Lithuanian language websites. The analysis was made using three commonly used classification algorithms in the field of sentiment analysis. The hyperparameters optimization using the grid search was performed to discover the best parameters of each classifier. All experimental investigations were made using the newly collected datasets from four Lithuanian news websites. The results of the applied machine learning algorithms show that the highest accuracy is obtained using a non-balanced dataset, via the multinomial Naive Bayes algorithm (71.1%). The other algorithm accuracies were slightly lower: a long short-term memory (71%), and a support vector machine (70.4%).


2021 ◽  
Vol 9 (1) ◽  
pp. 215-223
Author(s):  
Prateek Mishra, Dr.Anurag Sharma, Dr. Abhishek Badholia

Adverse effects can be seen in the entire body due to the major disorders known as Diabetes. The risk of dangers like diabetic nephropathy, cardiac stroke and other disorders can increase severally because of the undiagnosed diabetes. Around the globe the people are suffering from this disease. For a healthy life early detection of this disease is very curtail. As the causes of the diabetes is increasing rapidly this disease might turn up as a reason for worldwide concern. Increasing the chances for a more accurate predictions and form experiences automatic learning by computational method may be provided by Machine Learning (ML). With the help of R data manipulation tool for trends development and with risk factor patterns detection in Pima Indian diabetes technique of machine learning is been used in the current researches. With the use of R data manipulation tool analysis and development five different predictive models is done for the categorization of patients into diabetic and non- diabetic.  supervised machine learning algorithms namely multifactor dimensionality reduction (MDR), k-nearest neighbor (k-NN), artificial neural network (ANN) radial basis function (RBF) kernel support vector machine and linear kernel support vector machine (SVM-linear) are used for this purpose.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 440-444
Author(s):  
Navid Rashedi ◽  
Yifei Sun ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction The ability to accurately detect hypotension in trauma patients at the earliest possible time is important in improving trauma outcomes. The earlier an accurate detection can be made, the more time is available to take corrective action. Currently, there is limited research on combining multiple physiological signals for an early detection of hemorrhagic shock. We studied the viability of early detection of hypotension based on multiple physiologic signals and machine learning methods. We explored proof of concept with a small (5 minutes) prediction window for application of machine learning tools and multiple physiologic signals to detecting hypotension. Materials and Methods Multivariate physiological signals from a preexisting dataset generated by an experimental hemorrhage model were employed. These experiments were conducted previously by another research group and the data made available publicly through a web portal. This dataset is among the few publicly available which incorporate measurement of multiple physiological signals from large animals during experimental hemorrhage. The data included two hemorrhage studies involving eight sheep. Supervised machine learning experiments were conducted in order to develop deep learning (viz., long short-term memory or LSTM), ensemble learning (viz., random forest), and classical learning (viz., support vector machine or SVM) models for the identification of physiological signals that can detect whether or not overall blood loss exceeds a predefined threshold 5 minutes ahead of time. To evaluate the performance of the machine learning technologies, 3-fold cross-validation was conducted and precision (also called positive predictive value) and recall (also called sensitivity) values were compared. As a first step in this development process, 5 minutes prediction windows were utilized. Results The results showed that SVM and random forest outperform LSTM neural networks, likely because LSTM tends to overfit the data on small sized datasets. Random forest has the highest recall (84%) with 56% precision while SVM has 62% recall with 82% precision. Upon analyzing the feature importance, it was observed that electrocardiogram has the highest significance while arterial blood pressure has the least importance among all other signals. Conclusion In this research, we explored the viability of early detection of hypotension based on multiple signals in a preexisting animal hemorrhage dataset. The results show that a multivariate approach might be more effective than univariate approaches for this detection task.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Harleen Kaur ◽  
Vinita Kumari

Diabetes is a major metabolic disorder which can affect entire body system adversely. Undiagnosed diabetes can increase the risk of cardiac stroke, diabetic nephropathy and other disorders. All over the world millions of people are affected by this disease. Early detection of diabetes is very important to maintain a healthy life. This disease is a reason of global concern as the cases of diabetes are rising rapidly. Machine learning (ML) is a computational method for automatic learning from experience and improves the performance to make more accurate predictions. In the current research we have utilized machine learning technique in Pima Indian diabetes dataset to develop trends and detect patterns with risk factors using R data manipulation tool. To classify the patients into diabetic and non-diabetic we have developed and analyzed five different predictive models using R data manipulation tool. For this purpose we used supervised machine learning algorithms namely linear kernel support vector machine (SVM-linear), radial basis function (RBF) kernel support vector machine, k-nearest neighbour (k-NN), artificial neural network (ANN) and multifactor dimensionality reduction (MDR).


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 401
Author(s):  
Girma Neshir ◽  
Andreas Rauber ◽  
Solomon Atnafu

Topic Modeling is a statistical process, which derives the latent themes from extensive collections of text. Three approaches to topic modeling exist, namely, unsupervised, semi-supervised and supervised. In this work, we develop a supervised topic model for an Amharic corpus. We also investigate the effect of stemming on topic detection on Term Frequency Inverse Document Frequency (TF-IDF) features, Latent Dirichlet Allocation (LDA) features and a combination of these two feature sets using four supervised machine learning tools, that is, Support Vector Machine (SVM), Naive Bayesian (NB), Logistic Regression (LR), and Neural Nets (NN). We evaluate our approach using an Amharic corpus of 14,751 documents of ten topic categories. Both qualitative and quantitative analysis of results show that our proposed supervised topic detection outperforms with an accuracy of 88% by SVM using state-of-the-art-approach TF-IDF word features with the application of the Synthetic Minority Over-sampling Technique (SMOTE) and with no stemming operation. The results show that text features with stemming slightly improve the performance of the topic classifier over features with no stemming.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


2021 ◽  
Vol 186 (Supplement_1) ◽  
pp. 445-451
Author(s):  
Yifei Sun ◽  
Navid Rashedi ◽  
Vikrant Vaze ◽  
Parikshit Shah ◽  
Ryan Halter ◽  
...  

ABSTRACT Introduction Early prediction of the acute hypotensive episode (AHE) in critically ill patients has the potential to improve outcomes. In this study, we apply different machine learning algorithms to the MIMIC III Physionet dataset, containing more than 60,000 real-world intensive care unit records, to test commonly used machine learning technologies and compare their performances. Materials and Methods Five classification methods including K-nearest neighbor, logistic regression, support vector machine, random forest, and a deep learning method called long short-term memory are applied to predict an AHE 30 minutes in advance. An analysis comparing model performance when including versus excluding invasive features was conducted. To further study the pattern of the underlying mean arterial pressure (MAP), we apply a regression method to predict the continuous MAP values using linear regression over the next 60 minutes. Results Support vector machine yields the best performance in terms of recall (84%). Including the invasive features in the classification improves the performance significantly with both recall and precision increasing by more than 20 percentage points. We were able to predict the MAP with a root mean square error (a frequently used measure of the differences between the predicted values and the observed values) of 10 mmHg 60 minutes in the future. After converting continuous MAP predictions into AHE binary predictions, we achieve a 91% recall and 68% precision. In addition to predicting AHE, the MAP predictions provide clinically useful information regarding the timing and severity of the AHE occurrence. Conclusion We were able to predict AHE with precision and recall above 80% 30 minutes in advance with the large real-world dataset. The prediction of regression model can provide a more fine-grained, interpretable signal to practitioners. Model performance is improved by the inclusion of invasive features in predicting AHE, when compared to predicting the AHE based on only the available, restricted set of noninvasive technologies. This demonstrates the importance of exploring more noninvasive technologies for AHE prediction.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3827
Author(s):  
Gemma Urbanos ◽  
Alberto Martín ◽  
Guillermo Vázquez ◽  
Marta Villanueva ◽  
Manuel Villa ◽  
...  

Hyperspectral imaging techniques (HSI) do not require contact with patients and are non-ionizing as well as non-invasive. As a consequence, they have been extensively applied in the medical field. HSI is being combined with machine learning (ML) processes to obtain models to assist in diagnosis. In particular, the combination of these techniques has proven to be a reliable aid in the differentiation of healthy and tumor tissue during brain tumor surgery. ML algorithms such as support vector machine (SVM), random forest (RF) and convolutional neural networks (CNN) are used to make predictions and provide in-vivo visualizations that may assist neurosurgeons in being more precise, hence reducing damages to healthy tissue. In this work, thirteen in-vivo hyperspectral images from twelve different patients with high-grade gliomas (grade III and IV) have been selected to train SVM, RF and CNN classifiers. Five different classes have been defined during the experiments: healthy tissue, tumor, venous blood vessel, arterial blood vessel and dura mater. Overall accuracy (OACC) results vary from 60% to 95% depending on the training conditions. Finally, as far as the contribution of each band to the OACC is concerned, the results obtained in this work are 3.81 times greater than those reported in the literature.


Sign in / Sign up

Export Citation Format

Share Document