Membrane Reactor Based Hydrogen Separation from Biomass Gas -- A Review of Technical Advancements and Prospects

Author(s):  
Byron Smith ◽  
Murthy Shekhar Shantha

The world is bound to make a gradual shift from a hydrocarbon economy towards a hydrogen economy. This shift is being facilitated by the technological development in hydrogen energy that is occurring around the world. Gasification of biomass for generating biomass synthesis gas is a promising source for the distributed power generation concept as it is based on the local raw material supply. This concept has to be augmented by hydrogen fuel cell technology for modular, efficient and environmentally benign implementation. This provides the platform for looking at the option of separating hydrogen from biomass synthesis gas which is composed of H2, N2, CO, CO2, CH4, Tar, alkali traces and particulate matter at varying compositions depending on the biomass and operating conditions. This paper makes a critical review of the attempts made to reform and separate hydrogen through a hydrogen permeable membrane reformer reactor as it provides the energy efficient route. The feasibility and various membranes from palladium to ceramic membranes used in the reactor configurations and the engineering problems of the reactor will be analyzed. The inherent problems in providing a one shot modular solution for solving the problem will be discussed in the paper.

Author(s):  
Yu.A. Plakitkin ◽  
L.S. Plakitkina

As part of the Paris Agreement on climate change, Russia has made a commitment to reduce greenhouse gas emissions by 70% by 2030 (compared to the 1990 level) with account for maximum carbon sequestration capacity of forests and other ecosystems. Implementation of the Paris Agreement significantly extends the effects of the fundamental global energy sector trends on development of the energy producing sectors and results in reduced consumption of coal and other conventional energy sources. The authors identified the following five trends in development of global energy sector, i.e. increasing energy density, global energy transition, impact of local energy transitions on the global technological development, growth of energy density and labor productivity, formation of "carbon trap". The paper discusses the anticipated large technological leaps to be realized in the world economy by the middle of the XXI century. Measures and proposals on adaptation of the coal industry to the new conditions of the world economic development are presented. Among these, particular attention should be paid to the preparation of a new Coal Strategy-2050, which would include the development of a "stress scenario" of a possible reduction in coal consumption due to the decarbonisation of the global economy by 2050 and the implementation of hydrogen energy programmes by many countries.


Author(s):  
E. B. Lenchuk

This article investigates new global trends in scientific and technological development and their impact on sustainable socio-economic  development of individual countries and the world as a whole. The author shows the importance of implementing emerging technologies that open up new opportunities for the global economic growth by changing its technological basis, giving a competitive advantage to those countries that are leading this change. The article analyses which new approaches to science and technology policy are being adopted in developed and developing countries to maintain high positions in the R&D and emerging technology, and to conquer new markets. Furthermore, the author reveals the risks associated with a serious gap between Russia and the leading countries, which is unlikely to be bridged with the existing raw material export-based development model. Analyzing the state of scientific andtechnological development, advance in the field of new technologies, as well as implemented strategies and programs in this area, the author identifies key areas for improving scientific and technological state policies, which will allow the country to intensify R&D and innovation in this area, strengthen its position in the global hightech markets and create prerequisites for increasing Russia’s competitive advantages in the global technology scene.


2018 ◽  
Vol 2 (2) ◽  
pp. 21
Author(s):  
Alvaro Cristian Sánchez Mercado

Throughout history the development of the countries has been generated mainly by the impulse in two complementary axes: Science and Technology, and Trade. At present we are experiencing an exponential scientific and technological development and the Economy in all its fronts is driven by the intensive application of technology. According to these considerations, this research tries to expose the development of Innovation Management as a transversal mechanism to promote the different socioeconomic areas and especially those supported by engineering. To this end, use will be made of Technology Watch in order to identify the advances of the main research centres related to innovation in the world. Next, there will be an evaluation of the main models of Innovation Management and related methodologies that expose some of the existing Innovation Observatories in the world to finally make a proposal for Innovation Management applicable to the reality of Peru, so that it can be taken into consideration by stakeholders (Government, Academy, Business and Civil Society) committed to Innovation Management in the country


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2021 ◽  
Vol 20 (1) ◽  
pp. 63-79
Author(s):  
Vesa Kilpi ◽  
Tomi Solakivi ◽  
Tuomas Kiiski

AbstractShipping plays an important role in the world, transporting over 80% of international trade and employing over 1.5 million seafarers. The maritime industry, including shipbuilding and equipment manufacturing, is extensive. Both of these interconnected businesses are facing rapid change caused by increasingly speedy technological development and the tightening of environmental regulation. This survey-based research analyzes the current and future competence needs of firms operating in maritime logistics and the maritime industry. The findings indicate that in both contexts, the increasing importance of various general competences is understood and the need is recognized in particular to improve those related to environmental regulation as well as technology and automation. Overall, the gap between current and desired levels of competence is expected to widen. In terms of education, this is likely to affect vocational training and university-level learning differently in that functional competences are emphasized more in the former and social and meta-competences in the latter.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alberto Palma ◽  
Javier Mauricio Loaiza ◽  
Manuel J. Díaz ◽  
Juan Carlos García ◽  
Inmaculada Giráldez ◽  
...  

Abstract Background Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extraction by acid hydrolysis of plant biomass from three different crops (Chamaecytisus proliferus, Leucaena diversifolia and Paulownia trihybrid) was modelled and the resulting solid residues were used for energy production. Results The influence of the nature of the lignocellulosic raw material and the operating conditions used to extract the hemicellulose fraction on the heat capacity and activation energy of the subsequent combustion process was examined. The heat power and the activation energy of the combustion process were found to depend markedly on the hemicellulose content of the raw material. Thus, a low content in hemicelluloses resulted in a lower increased energy yield after acid hydrolysis stage. The process was also influenced by the operating conditions of the acid hydrolysis treatment, which increased the gross calorific value (GCV) of the solid residue by 0.6–9.7% relative to the starting material. In addition, the activation energy of combustion of the acid hydrolysis residues from Chamaecytisus proliferus (Tagasaste) and Paulownia trihybrid (Paulownia) was considerably lower than that for the starting materials, the difference increasing with increasing degree of conversion as well as with increasing temperature and acid concentration in the acid hydrolysis. The activation energy of combustion of the solid residues from acid hydrolysis of tagasaste and paulownia decreased markedly with increasing degree of conversion, and also with increasing temperature and acid concentration in the acid hydrolysis treatment. No similar trend was observed in Leucaena diversifolia (Leucaena) owing to its low content in hemicelluloses. Conclusions Acid hydrolysis of tagasaste, leucaena and paulownia provided a valorizable liquor containing a large amount of hemicelluloses and a solid residue with an increased heat power amenable to efficient valorization by combustion. There are many potential applications of the hemicelluloses-rich and lignin-rich fraction, for example as multi-components of bio-based feedstocks for 3D printing, for energy and other value-added chemicals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 321
Author(s):  
Dobri Ivanov ◽  
Galina Yaneva ◽  
Irina Potoroko ◽  
Diana G. Ivanova

The fascinating world of lichens draws the attention of the researchers because of the numerous properties of lichens used traditionally and, in modern times, as a raw material for medicines and in the perfumery industry, for food and spices, for fodder, as dyes, and for other various purposes all over the world. However, lichens being widespread symbiotic entities between fungi and photosynthetic partners may acquire toxic features due to either the fungi, algae, or cyano-procaryotes producing toxins. By this way, several common lichens acquire toxic features. In this survey, recent data about the ecology, phytogenetics, and biology of some lichens with respect to the associated toxin-producing cyanoprokaryotes in different habitats around the world are discussed. Special attention is paid to the common toxins, called microcystin and nodularin, produced mainly by the Nostoc species. The effective application of a series of modern research methods to approach the issue of lichen toxicity as contributed by the cyanophotobiont partner is emphasized.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 766
Author(s):  
Magdalena Skotnicka ◽  
Kaja Karwowska ◽  
Filip Kłobukowski ◽  
Aleksandra Borkowska ◽  
Magdalena Pieszko

All over the world, a large proportion of the population consume insects as part of their diet. In Western countries, however, the consumption of insects is perceived as a negative phenomenon. The consumption of insects worldwide can be considered in two ways: on the one hand, as a source of protein in countries affected by hunger, while, on the other, as an alternative protein in highly-developed regions, in response to the need for implementing policies of sustainable development. This review focused on both the regulations concerning the production and marketing of insects in Europe and the characteristics of edible insects that are most likely to establish a presence on the European market. The paper indicates numerous advantages of the consumption of insects, not only as a valuable source of protein but also as a raw material rich in valuable fatty acids, vitamins, and mineral salts. Attention was paid to the functional properties of proteins derived from insects, and to the possibility for using them in the production of functional food. The study also addresses the hazards which undoubtedly contribute to the mistrust and lowered acceptance of European consumers and points to the potential gaps in the knowledge concerning the breeding conditions, raw material processing and health safety. This set of analyzed data allows us to look optimistically at the possibilities for the development of edible insect-based foods, particularly in Europe.


Sign in / Sign up

Export Citation Format

Share Document