scholarly journals Water sorption properties of Dutch type semi-hard cheese edge in the range of common storing temperatures

Author(s):  
Maria Carolina Soares Pereira ◽  
Jiří Štencl ◽  
Bohumíra Janštová ◽  
Václav Vlášek

Moisture sorption isotherms of Dutch type semi-hard cheese edge in the temperature range of 10–25 ºC and water activity (Aw) from 0.11 to 0.98 were determined using manometric method. The sorption curves had a sigmoid shape. The equilibrium moisture content (EMC) of cheese samples increased with an increase in Aw at a constant temperature both for water adsorption and desorption. An increase in temperature caused an increase in Aw for the same moisture content (MC) and, if Aw was kept constant, an increase in temperature caused a decrease in the amount of absorbed water. Critical values of equilibrium moisture content, corresponding to the Aw = 0.6, were between 11 % MC (w.b.) and 17 % MC (w.b.) both for moisture adsorption and desorption. Values of sorption heat were calculated from moisture sorption isotherms by applying the Clausius-Clapeyron equation. Values of the heat of desorption are higher than those of adsorption and the difference increases with the MC decrease. Heat of sorption decreased from 48.5 kJ/mol (~5.5 % MC w.b.) to the values approaching the heat of vaporization of pure water, free MC. The critical value for free water evaporation is about w = 27 % (w.b.) for the range of temperature 10–25 ºC.

Author(s):  
André L. D. Goneli ◽  
Paulo C. Corrêa ◽  
Gabriel H. H. de Oliveira ◽  
Osvaldo Resende ◽  
Munir Mauad

ABSTRACT Sorption isotherms are of great importance in post-harvest procedures, especially for predicting drying and storage, which help to establish the final moisture content of the product under certain environmental condition. Hysteresis is a phenomenon that occurs due to the difference between adsorption and desorption curves, which aids the evaluation of chemical and microbiological deteriorations, indicating the stability of stored products. Moisture sorption isotherms of castor beans were determined and hysteresis was analyzed. Static gravimetric technique at different temperatures (25, 35, 45 and 55 ± 1 °C) was used. Saturated salt solutions in the range of 37-87% ± 2% were utilized to create the required controlled relative humidity environment. Equilibrium moisture content data were correlated by different mathematical models and the Modified Halsey model presented good adjustment for the data, according to statistical procedures. Hysteresis between adsorption and desorption isotherms is present over the range of 0.2-0.9 of water activity, regardless of the temperature. This phenomenon decreases with temperature increase.


Author(s):  
Olusegun J Oyelade

Insights into the relationship between the air relative humidity (water activity (aw)) and equilibrium moisture content of food materials is essential to maintain good keeping quality and optimize process operation. The adsorption isotherms for cassava flour (lafun) were investigated with the static gravimetric method. Concentrated acid (H2SO4) solutions were used to vary the micro-climate in the study and presented in an easy-to-use template-like format over the range of temperature (27- 40oC) and aw (0.10-0.80) usually experienced in the tropical environment. The experimental data were compared with five widely recommended models in the literature for food sorption isotherms (GAB, modified GAB, modified Oswin, modified Henderson & modified Chung-Pfost). The moisture sorption isotherms were sigmoidal in shape and were influenced by temperature. The modified Oswin model was found to be most adequate whilst the modified GAB appears not suitable to model the adsorption isotherms for lafun.


Author(s):  
Jitka Langová ◽  
Donludee Jaisut ◽  
Ratiya Thuwapanichayanan ◽  
Charotorn Phowong ◽  
Jiří Štencl ◽  
...  

Water sorption tests of Roselle (Hibiscus sabdariffa L.) carried out under laboratory conditions are presented together with mathematical analyses of the moisture sorption isotherms (MSI’s). Moisture equilibrium data for adsorption and desorption of water from Roselle powder were investigated at near ambient air temperatures in the range of 5 and 35 °C and water activity (Aw) ranging from 0.11 to 0.97. The manometric method has been used for water sorption tests. Models for MSI’s are exponential equations. Coefficients of determination are 0.998 and 0.996 (for adsorption and desorption at 5 °C, respectively), 0.998 and 0.999 (for adsorption and desorption at 20 °C, respectively), and 0.998 and 0.999 (for adsorption and desorption at 35 °C, respectively). The equilibrium moisture content (EMC) of Roselle samples increased with an increase of Aw at a constant temperature both for adsorption and desorption. Adsorption curve equates to desorption curve at higher temperatures of tests carried out. Critical values of EMC of samples tested corresponding to the Aw equal to 0.6 were between 13.401% moisture content wet basis (MC w.b.) and 15.934% MC (w.b.) for moisture adsorption and desorption, respectively. These values are useful for storing conditions optimisation from point of view microorganisms grow and structural changes analyses. Crystal structure changes were observed during adsorption and desorption in the microscope, too. It was found out glass transition in dependence on the water content of samples tested.


Author(s):  
Zhao Yang ◽  
Enlong Zhu ◽  
Zongsheng Zhu

Abstract Moisture sorption isotherms of green soybean seeds were determined by static gravimetric method and water activity ranging from 0.11to 0.94 at 20, 30 and 40°C. The optimal sorption model of green soybean was determined by using nonlinear regression method. Modified BET multilayer sorption theory model parameters at different temperatures were calculated, isosteric sorption heat was derived by the water activity sorption isosteric model. Results indicated that sorption isotherms were belong to type III behaviour, a notable hysteresis effect was observed, Green soybean monolayer saturated sorption capacity was greater in desorption process than that of adsorption. The monolayer saturated sorption capacity decreased with increasing temperature, while the number of multilayer had a reverse trend with the monolayer saturated sorption capacity, the optimal sorption isotherm model for green soybean is Halsey model, The thermodynamic parameters including net isosteric heat of adsorption and desorption calculated at 40°C were 105.2-1865.4 kJ/kg and 111.62-1939.0 kJ/kg with equilibrium moisture content between 5% and 32% (d.b.), respectively. The net isosteric heat of sorption decreased with increasing equilibrium moisture content.


Author(s):  
Akbar Arabhosseini ◽  
Willem Huisman ◽  
Anton van Boxtel ◽  
Joachim Müller

The equilibrium moisture content of tarragon, Artemisia dracunculus L. (stem and leaf separately) was determined by using the saturated salt solutions method at three temperatures (25, 50 and 70°C) within a range of 5 to 90% relative humidity. Both adsorption and desorption methods were used for stem and leaf of two varieties: Russian and French tarragon. Experimental curves of moisture sorption isotherms were fitted by modified Henderson, modified Halsey, modified Oswin, modified Chung-Pfost and GAB equations and evaluated by residual sum squares, standard error of estimate and mean relative deviation. The modified Halsey and GAB equations were found to be the most suitable for describing the relationship among equilibrium moisture content, relative humidity and temperature. There was no significant difference between the equilibrium moisture content of the Russian and French tarragon.


2014 ◽  
Vol 1033-1034 ◽  
pp. 681-689
Author(s):  
Zhong Yang Ren ◽  
Yan Yan Wu ◽  
Zhen Hua Duan ◽  
Lai Hao Li ◽  
Xian Qing Yang

The moisture sorption characteristics of salted largehead hairtail (Trichiurus lepturus) were investigated within the limits of water activity (0.11-0.98) at 25 and 35°C using a self-made instrument for the measurement of the equilibrium moisture content according to the static gravimetric method. The shape of the sorption isotherms was sigmoidal. The moisture sorption isotherms exhibited significant hysteresis. The hysteresis of salted fish may be due to the salt permeating into the body of the fish as a result of desorption and adsorption processes. Seventeen mathematical models were fit to the experimental data for the equilibrium moisture content at different water activity levels. The Ferro-Fontan equation provided the best fit for the experimental data of the equilibrium moisture content among the 17 models assessed for the sorption isotherms at 25 and 35°C. The net isosteric heats of sorption decreased gradually with increases in moisture content. The isosteric heats of sorption ranged from 44.59 kJ/mol to 45.61 kJ/mol between the moisture contents of 22.22% and 43.25% for salted largehead hairtail.


2000 ◽  
Vol 18 (No. 3) ◽  
pp. 86-90 ◽  
Author(s):  
N.D. Menkov ◽  
D.I. Gelyazkov

The equilibrium moisture contents were determined for millet seeds of two cultivars using the gravimetric static method at 10, 25 and 40°C over a range of relative humidities from 0.112 to 0.868. The sorption capacity of the seeds decreased with an increase in temperature at constant relative humidity. The hysteresis effect is not distinctly expressed but statistically significant. The differences between equilibrium moisture contents of the cultivars are small. Four models were applied for analyzing the experimental data using the following equations: modified Chung-Pfost, modified Halsey, modified Oswin, and modified Henderson. The modified Chung-Pfost model was found to be the most suitable for describing the relationship between equilibrium moisture content, relative humidity and temperature.


2019 ◽  
Vol 62 (1) ◽  
pp. 105-114
Author(s):  
Xiuping Jiang ◽  
Xiuping Jiang ◽  
Huanhuan Li ◽  
Hosahalli S. Ramaswamy ◽  
Songming Zhu ◽  
...  

Abstract. Understanding of moisture sorption isotherms (MSI) is critical for predicting the stability of wood during handling, transport, and storage. The aim of this study was to evaluate the adsorption and desorption isotherm characteristics of high-pressure (HP) treated paulownia wood and to identify the best-fitting model to describe its sorption behavior. The equilibrium moisture contents (EMCs) of HP-treated paulownia wood were obtained using a static gravimetric method under different storage conditions: three temperatures (20°C, 30°C, and 40°C) and five water activity (aw) levels (0.32 to 0.95). Results showed that HP parameters did not significantly affect the MSI trend of treated groups. Eight modified models (modified Chung-Pfost, modified Henderson, modified Oswin, modified Halsey, Chen-Clayton, Guggenheim-Anderson-de Boer (GAB), simply modified GAB, and Peleg) were fitted to the experimental data. The Chen-Clayton model (temperature-dependent) produced randomized residuals and the best prediction performance for both adsorption and desorption among all models. Net isosteric heat of adsorption and desorption decreased from 7.55 to 4.84 kJ mol-1 and from 18.1 to 12.2 kJ mol-1, respectively, with an increase in EMC from 7.5% to 10%. The isosteric temperature (Tß) was 352 K for adsorption and 335 K for desorption, between which all the adsorption and desorption reactions proceeded at the same rate. All thermodynamic functions were adequately characterized by a power law model. Keywords: Equilibrium moisture content, High-pressure treatment, Modeling, Moisture sorption isotherm, Paulownia wood, Temperature, Thermodynamic analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Tochukwu Samuel ◽  
J. Obeta Ugwuanyi

Garri is a creamy white or yellow starchy grit produced by roasting to gelatinization and dryness of peeled, washed, mashed, and fermented dewatered cassava roots. It is the most important product of cassava in West and Central Africa. Mean moisture content of yellow and white garri was 11.11% and 10.81% within 24 hrs of sampling from the market, increasing to 17.27% and 16.14%, respectively, following 3 months of storage at room temperature. The water activity of samples varied from initial 0.587 to 0.934 following storage. Moisture sorption isotherms, determined by static gravimetric techniques at 20° and 30°C, showed temperature dependent BET Sigmoidal type II behaviour typical of carbohydrate rich foods but modulated very slightly by the content of palm oil. Equilibrium moisture content decreased with increase in temperature at constant water activity. A total of 10 fungal species belonging to the generaMucor,Penicillium,Cephalosporium,Aspergillus,Scopulariopsis,Rhizopus, and Paecilomyceswere identified, with range increasing with water activity of samples.


Sign in / Sign up

Export Citation Format

Share Document