Isolation and Physico-chemical Characterization of Mung Bean Starches

Author(s):  
El-Sayed Ali Abdel-Rahman ◽  
Fawzy A El-Fishawy ◽  
Mohamed A El-Geddawy ◽  
Tomas Kurz ◽  
Mohamed N El-Rify

The starch yields from both whole (MSI1) and decorticated mung bean seeds (MSI2) were 26.00 and 30.50% on total seed basis and 64.40 and 75.55% of total starch. Chemical analysis of the starch isolates i.e. MSI1 and MSI2 showed that they contained 9.00 and 8.90% moisture, 0.76 and 0.80% protein, 0.05 and 0.09% oil and 0.20 and 0.13% ash , respectively. The results also indicated that the purity of starch isolates was high. Microscopic examination (400X) showed that most mung bean starch granules had irregular shapes, which varied from oval, round to bean-shaped. Mung bean starch granule size varied from 7.65-33.15 µm with mean value at 20.40 µm. Studying the physico-chemical properties of mung bean starch indicated that the gelatinization temperature range was 65-69-75°C at initial, midpoint and final gelatinization of starch granules. Mung bean starch had a considerably lower degree of syneresis than other legume starches. Moreover, gel consistency decreased as starch concentration was increased. Viscosity of mung bean starch was high indicating that it had higher resistance to swelling and rupture than did cereal starches. The results indicated that the swelling power and solubility of the starch increased with increasing temperature. In addition, the solubility percentage increased, but non-linearly, with increasing swelling power.

2018 ◽  
Vol 3 (1) ◽  
pp. 28-44
Author(s):  
Dinesh Khadka ◽  
Sushil Lamichhane ◽  
Amit P Timilsina ◽  
Bandhu R Baral ◽  
Kamal Sah ◽  
...  

Soil pit digging and their precise study is a decision making tool to assess history and future of soil management of a particular area. Thus, the present study was carried out to differentiate soil physico-chemical properties in the different layers of excavated pit of the National Maize Research Program, Rampur, Chitwan, Nepal. Eight pits were dug randomly from three blocks at a depth of 0 to 100 cm. The soil parameters were determined in-situ, and in laboratory for texture, pH, OM, N, P (as P2O5), K (as K2O), Ca, Mg, S, B, Fe, Zn, Cu and Mn of collected soils samples of different layers following standard analytical methods at Soil Science Division, Khumaltar. The result revealed that soil structure was sub-angular in majority of the layers, whereas bottom layer was single grained. The value and chrome of colour was increasing in order from surface to bottom in the majority pits. Similarly, the texture was sandy loam in majority layers of the pits. Moreover, four types of consistence (loose to firm) were observed. Furthermore, mottles and gravels were absent in the majority layers. Likewise, soil was very to moderately acidic in observed layers of majority pits, except bottom layer of agronomy block was slightly acidic. Regarding fertility parameters (OM, macro and micronutrients), some were increasing and vice-versa, while others were intermittent also. Therefore, a single layer is not dominant for particular soil physico-chemical parameters in the farm. In overall, surface layer is more fertile than rest of the layers in all the pits.     


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1186
Author(s):  
Lívia da Costa Pereira ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Adriana Terezinha Neves Novellino Alves ◽  
Rodrigo Figueiredo de Brito Resende ◽  
Marcelo José Pinheiro Guedes de Uzeda ◽  
...  

This study’s aim was to evaluate the biocompatibility and bioabsorption of a new membrane for guided bone regeneration (polylactic-co-glycolic acid associated with hydroxyapatite and β-tricalcium phosphate) with three thicknesses (200, 500, and 700 µm) implanted in mice subcutaneously. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and the quantification of carbon, hydrogen and nitrogen were used to characterize the physico-chemical properties. One hundred Balb-C mice were divided into 5 experimental groups: Group 1—Sham (without implantation); Group 2—200 μm; Group 3—500 μm; Group 4—700 μm; and Group 5—Pratix®. Each group was subdivided into four experimental periods (7, 30, 60 and 90 days). Samples were collected and processed for histological and histomorphometrical evaluation. The membranes showed no moderate or severe tissue reactions during the experimental periods studied. The 500-μm membrane showed no tissue reaction during any experimental period. The 200-μm membrane began to exhibit fragmentation after 30 days, while the 500-μm and 700-µm membranes began fragmentation at 90 days. All membranes studied were biocompatible and the 500 µm membrane showed the best results for absorption and tissue reaction, indicating its potential for clinical guided bone regeneration.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 263 ◽  
Author(s):  
Maria Letizia Manca ◽  
Iris Usach ◽  
José Esteban Peris ◽  
Antonella Ibba ◽  
Germano Orrù ◽  
...  

New three-dimensionally-structured hybrid phospholipid vesicles, able to load clotrimazole in a high amount (10 mg/mL), were obtained for the first time in this work by significantly reducing the amount of water (≤10%), which was replaced with a mixture of glycerol and ethanol (≈90%). A pre-formulation study was carried out to evaluate the effect of both the composition of the hydrating medium and the concentration of the phospholipid on the physico-chemical properties of hybrid vesicles. Four different three-dimensionally-structured hybrid vesicles were selected as ideal systems for the topical application of clotrimazole. An extensive physico-chemical characterization performed using transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM), 31P-NMR, and small-angle X-ray scattering (SAXS) displayed the formation of small, multi-, and unilamellar vesicles very close to each other, and was capable of forming a three-dimensional network, which stabilized the dispersion. Additionally, the dilution of the dispersion with water reduced the interactions between vesicles, leading to the formation of single unilamellar vesicles. The evaluation of the in vitro percutaneous delivery of clotrimazole showed an improved drug deposition in the skin strata provided by the three-dimensionally-structured vesicles with respect to the commercial cream (Canesten®) used as a reference. Hybrid vesicles were highly biocompatible and showed a significant antifungal activity in vitro, greater than the commercial cream Canesten®. The antimycotic efficacy of formulations was confirmed by the reduced proliferation of the yeast cells at the site of infection in vivo. In light of these results, clotrimazole-loaded, three-dimensionally-structured hybrid vesicles appear to be one of the most innovative and promising formulations for the treatment of candidiasis infections.


2011 ◽  
Vol 63 (10) ◽  
pp. 649-654 ◽  
Author(s):  
Thierry Tran ◽  
Byoung-Ho Lee ◽  
Han-Seung Yang ◽  
Sunee Chotineeranat ◽  
Klanarong Sriroth ◽  
...  

2014 ◽  
Vol 10 (2) ◽  
pp. 261-268 ◽  
Author(s):  
Lingwen Zhang ◽  
Hongfang Ji ◽  
Mingduo Yang ◽  
Hanjun Ma

Abstract Influences of mung bean starches treated with different high hydrostatic pressure (HHP) on the properties of batters and crusts from deep-fried pork nuggets were explored. HHP-treated starch increased water retention capacity of batter and consequently the batter pick-up. The increase in pressure at 150–450 MPa could facilitate hydration and swelling of starch granules during gelatinization. The crusts containing HHP-treated starches had higher moisture and less oil content, and the oil content was 15.82 g/100 g dry weight (DW) for 450 MPa treated starch, which was much lower than that of native starch (18.39 g/100 g DW) (p<0.05). Additionally, HHP-treated starches changed the crispness of crusts with increases in the slope and decrease in the shearing distance. Results indicated that mung bean starch treated with HHP in the range of 150–450 MPa could improve the quality of deep-fried battered food.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2103
Author(s):  
Saša Prđun ◽  
Lidija Svečnjak ◽  
Mato Valentić ◽  
Zvonimir Marijanović ◽  
Igor Jerković

Chemical characterization of bee pollen is of great importance for its quality estimation. Multifloral and unifloral bee pollen samples collected from continental, mountain and Adriatic regions of Croatia were analyzed by means of physico-chemical, chromatographic (GC-MS), and spectroscopic (FTIR-ATR) analytical tools, aiming to conduct a comprehensive characterization of bee pollen. The most distinctive unifloral bee pollen with regard to nutritional value was Aesculus hippocastanum (27.26% of proteins), Quercus spp. (52.58% of total sugars), Taraxacumofficinale (19.04% of total lipids), and Prunusavium (3.81% of ash). No statistically significant differences between multifloral and unifloral bee pollen from different regions were found for most of the physico-chemical measurement data, with an exception of melezitose (p = 0.04). Remarkable differences were found among the bee pollen HS VOCs. The major ones were lower aliphatic compounds, monoterpenes (mainly linalool derivatives, especially in Prunusmahaleb and P.avium bee pollen), and benzene derivatives (mainly benzaldehyde in T.officinale and Salix spp.). Aldehydes C9 to C17 were present in almost all samples. FTIR-ATR analysis revealed unique spectral profiles of analyzed bee pollen exhibiting its overall chemical composition arising from molecular vibrations related to major macromolecules—proteins, lipids, and carbohydrates (sugars).


2021 ◽  
Vol 26 (1) ◽  
pp. 25
Author(s):  
Sri Haryani Anwar ◽  
Yeni Chandra Dewi ◽  
Novi Safriani

Modification of native starch is needed mainly to increase its solubility in water thus broaden its application in food industries. On the other hand, modification of canna and jicama starches have rarely been applied. Physical and chemical modifications of starches are conducted to modify starch characteristics. The research aimed to investigate the physico-chemical properties of canna and jicama starches that had been modified chemically and physically. Chemical modifications which were conducted included modification via substitution with Octenyl Succinate Anhydride (OSA) and hydrolysis using hydrochloric acid (HCl), while physical modification was conducted via the Heat Moisture Treatment (HMT). The starch physico-chemical characteristics evaluated were degree of acid (DA), swelling power, degree of substitution (DS), moisture, ash, fat, and fiber contents. The analysis results showed that moisture, ash, fat, and fiber contents of native canna and jicama starches were not significantly different from those of modified ones. The result also revealed that the type of starches and modification methods increased the swelling power significantly (P≤0,05). The DS of modified canna dan jicama starches were 0.0246% and 0.0176%, respectively. While the DA of modified canna and jicama starches were 0.14% and 0.18%, respectively. This DA values of modified starches by HCL hydrolysis had meet the Indonesian National Standard (SNI 01-2593-1992) which is maximum of 5% for food application.Keywords: canna starch, jicama starch, HMT modification, modified starch, OSA modification 


AGROINTEK ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 57-66
Author(s):  
Kukuk Yudiono

The main problem encountered in the production of tempeh was its raw material, namely soybeans dominated by soybean supplied from other countries, mainly dominated by imported products from the United States. The majority of tempeh craftsmen's perception is that imported soybeans are superior to local soybeans. This is of course unfortunate because it will further aggravate the competitiveness of local soybeans. This research was conducted to explore the advantages of local soybeans, especially from the physico-chemical aspects of imported soybeans. The research objective was to map the physico-chemical properties of local and imported soybeans as raw material for tempeh. One factor trial design was used, with soybean varieties (4 local and 1 imported) as a factor. Variables observed included: antioxidant, bulk density, swelling power, plant quality, seed size, WAI, WSI, protein, yield, and density. The results obtained: 1) antioxidant : Devon 1 imported soybeans, 2) bulk density: fourth of local soybeans = imported soybeans, 3) swelling power : Argomulyo = imported soybeans, 4) quality of  cooking: fourth of  local soybeans imported soybeans, 5) seed size : Grobogan and Argomulyo imports, 6) WAI:  Argomulyo and Demas imported soybeans, 7) WSI: Devon = imported soybeans, 8) protein: Grobogan and Detam imported soybeans, 9) density:  Bromo imported soybeans, 10) extraction value: Anjasmoro, Argomulyo, and Grobogan imported soybeans.


Sign in / Sign up

Export Citation Format

Share Document