Use of Response Surface Methodology to Study the Influence of Water Content and Air Pressure on Cake Batter Quality

2007 ◽  
Vol 3 (6) ◽  
Author(s):  
Irene Allais ◽  
Eric Dufour

The first aim of the study was to model the influence of water amount and air pressure on various batter properties using Response Surface Methodology. Batter quality was assessed through density, water content, colour, spreadability and fluorescence spectra. Quadratic models using two variables well represented spreading time, water content and final temperature, but they failed to fairly represent initial density, overrun and L*a*b* values. In addition, simplified models using a single variable also well represented the data: final density was modelled by a linear equation involving pressure, whereas initial density, water content and final temperature were modelled by a linear equation involving water amount. Spreading time was modelled using a quadratic equation using water amount. Experimental results were compared with expertise rules used by operators to control the industrial process. Indeed, operators often used water amount and air pressure as controlling variables. It was found that experimental results were in agreement with expertise rules. The second aim was to investigate the link between smart lab-measurement methods such as fluorescence spectroscopy and simple macroscopical properties used by operators such as water content, density, spreading time and colour. By applying hierarchical clustering analysis to NADH and tryptophan merged spectra, batter samples manufactured at various water amounts and pressure levels were clearly separated at a high level of discrimination. Neither water content nor spreading time were satisfactorily predicted from NADH or tryptophan spectra using PLS.

2014 ◽  
Vol 887-888 ◽  
pp. 605-609
Author(s):  
Chu Shu Zhang ◽  
Jie Sun ◽  
Li Na Yu ◽  
Jie Bi ◽  
Jian Xiong Feng ◽  
...  

To optimize aflatoxin production of Aspergillus flavus on peanut, the response surface methodology were applied based on previous experiment. The results showed that the influence of water content of peanuts,time and relative humidity were obvious and were not linear relationship. The optimal aflatoxin production conditions were that water content of peanuts was12%, the time was 7 days, relative humidity was 80%.


Author(s):  
Abed Saad ◽  
Nour Abdurahman ◽  
Rosli Mohd Yunus

: In this study, the Sany-glass test was used to evaluate the performance of a new surfactant prepared from corn oil as a demulsifier for crude oil emulsions. Central composite design (CCD), based on the response surface methodology (RSM), was used to investigate the effect of four variables, including demulsifier dosage, water content, temperature, and pH, on the efficiency of water removal from the emulsion. As well, analysis of variance was applied to examine the precision of the CCD mathematical model. The results indicate that demulsifier dose and emulsion pH are two significant parameters determining demulsification. The maximum separation efficiency of 96% was attained at an alkaline pH and with 3500 ppm demulsifier. According to the RSM analysis, the optimal values for the input variables are 40% water content, 3500 ppm demulsifier, 60 °C, and pH 8.


2014 ◽  
Vol 20 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Kumar Singh ◽  
Mausumi Mukhopadhyay

In the present work, solvent free olive oil glycerolysis for the monoglycerides (MG) and diglycerides (DG) production with an immobilized Candida rugosa lipase was studied. MG and DG production were optimized using experiment design techniques and response surface methodology (RSM). RSM based on five-level, a five-variable central composite design (CCD) was used to optimize MG and DG production: reaction time, temperature, molar ratio of glycerol to oil, amount of lipase, and water content in glycerol. The reaction time, temperature, and amount of lipase were observed to be the most significant factors on the process response. The immobilized Candida rugosa lipase revealed optimum yield of MG and DG as 38.71 and 40.45 wt% respectively following a 5h reaction time with 0.025 g of lipase and 5% water content in glycerol at 40?C temperature. The yield of MG and DG production can be enhanced 1.5 fold by RSM.


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 95-104
Author(s):  
D. Hunaefi ◽  
Rahmawati R. ◽  
D. Saputra ◽  
R.R. Maulani ◽  
T. Muhandri

This research aimed to optimize the tray dryer temperature and time of white corn flour culture by Response Surface Methodology (RSM). There were two cultures used in this research, namely Amylolytic Culture (AC) and Complete Culture (CC). AC consisted of Penicillium citrinum, Aspergillus niger, Acremonium strictum, and Candida famata, while CC consisted of Penicillium chrysogenum, Penicillium citrinum, Aspergillus niger, Rhizopus stolonifer, Rhizopus oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri and Candida krusei/incospicua. The independent variables in this study were drying temperature and time, where the quality indicators used were total viability of mold and yeast, water content, water activity, and pH. This research used a factor response surface methodology. Data were analyzed by ANOVA with an α level of 95%. The result of this research showed that the optimum drying process for AC starter was 40°C for 10 hrs, with characteristic response viability 8.8×107 CFU/g, water activity 0.43, water content 8.90%, and pH 4.05. CC starter showed an optimum drying process at 49°C for 4.5 hrs, with characteristic response viability 4.9×107 CFU/g, water activity 0.49, water content 7.02%, and pH 3.95. The optimum tray dryer temperatures and times were achieved for AC and CC starters.


2016 ◽  
Vol 36 (02) ◽  
pp. 226
Author(s):  
Yusuf Hendrawan ◽  
Bambang Susilo ◽  
Angky Wahyu Putranto ◽  
Dimas Firmanda Al Riza ◽  
Dewi Maya Maharani ◽  
...  

Milk candy is a product which has to be produced under a high temperature to achieve the caramelization process. The use of vacuum system during a food processing is one of the alternatives to engineer the value of a material’s boiling point. The temperature control system and the mixing speed in machine that produce the milk candy were expected to be able to prevent the formation of off-flavour in the final product. A smart control system based on fuzzy logic was applied in the temperature control within the double jacket vacuum evaporator machine that needs stable temperature in the cooking process. The objective of this research is developing vacuum evaporator for milk candy production using fuzzy temperature control. The result in machine and system planning showed that the process of milk candy production was going on well. The parameter optimization of water content and ash content purposed to acquire the temperature point parameter and mixing speed in milk candy production. The optimization method was response surface methodology (RSM), by using the model of central composite design (CCD). The optimization resulted 90.18oC for the temperature parameter and 512 RPM for the mixing speed, with the prediction about 4.69% of water content and 1.57% of ash content.Keywords: Optimization, vacuum evaporator, fuzzy, milk candy, response surface methodologyABSTRAKPermen susu merupakan salah satu produk yang diolah dengan suhu tinggi untuk mencapai proses karamelisasi. Pengolahan pangan dengan sistem vakum merupakan salah satu alternatif untuk merekayasa nilai titik didih suatu bahan. Sistem pengendalian suhu serta kecepatan pengadukan pada mesin produksi permen susu diharapkan dapat mencegah terbentuknya partikel hitam (off-flavour) pada produk akhir. Sistem kontrol cerdas logika fuzzy diaplikasikan dalam pengendalian suhu pada mesin evaporator vakum double jacket yang membutuhkan tingkat stabilitas suhu pemasakan permen susu. Tujuan dari penelitian ini adalah membuat rancang bangun evaporator vakum pada pembuatan permen susu dengan menggunakan pengendali suhu fuzzy. Hasil perancangan mesin dan sistem menunjukkan bahwa proses produksi permen susu dapat berlangsung dengan baik. Optimasi parameter kadar air dan kadar abu dilakukan untuk mendapatkan titik parameter suhu dan kecepatan pengadukan produksi permen susu yang optimum. Metode optimasi menggunakan response surface methodology (RSM) model central composite design (CCD). Hasil optimasi didapatkan parameter suhu 90,18oC dan kecepatan pengadukan 512 RPM, dengan prediksi produk permen susu memiliki nilai kadar air 4,69% dan kadar abu 1,57%.Kata kunci: Optimasi, evaporator vakum, fuzzy, permen susu, response surface methodology


Author(s):  
Kitisak Chimklin ◽  
Chatchapol Chungchoo

In Hard Disk Drive (HDD) manufacturing, there is always a concern about the cutting defects that are caused by residual cutting chips. Only a small amount of 10 μm chips (act as the air gap) can cause the workpiece to tilt and shift from the correct position, and thus affect the dimension of the workpiece (mainly the Base HDD). For this reason, researchers adapted the adjustable micrometer as a simulation device that resembles the air gap for the design of the Air Gap Sensor Module. The design of experiments using response surface methodology will be studied to confirm the appropriate factors of the prototype. This study reports the optimization of the main factors that affect Air Gap Sensor Module condition: Air Nozzle Diameter 2.303 mm, Air Pressure 0.1 MPa, and Sampling Time 645 ms, which has a high square of the coefficient correlation (R-squared = 99.0%) with a close relationship between gap distance and air pressure. The relationship between these variables is mostly linear. The R-squared error percentage of actual value is less than 0.93% compared to predicted value. The mathematical model results and experimental values were consistent and able to predict response variables. The Air Gap Sensor Module can provide the measurement results in micron ccuracy and displays light and beep to confirm as acceptable or reject gap conditions with the uncertainty of measurement ± 0.001 mm.


2014 ◽  
Vol 17 (2) ◽  
pp. 60-72
Author(s):  
Huong Huynh Lien Ly ◽  
Huong Thuy Nguyen

Biomass of Lactobacillus acidophilus was optimized in the tofu wastewater medium by Plackett-Burman matrix and Response surface methodology – Central composite design (RSM-CCD). The highest biomass was 0.73 g/100mL at 106 CFU/mL of initial density of L. acidophilus in tofu wastewater medium, with 0.37% (NH4)2SO4 and 17.59% sucrose. L. acidophilus produced maximum value of biomass after 20 hours of incubation at 37°C. There was a similar proportion at 96.05% in comparison to experimental value and optimization theory, approximatly 93.58% L. acidophilus biomass in MRS medium. As a result, optimization model could be applied in biomass production of L. acidophilus to enhance comercial value and contribute to environmental protection.


2021 ◽  
Vol 9 (1) ◽  
pp. 66
Author(s):  
Desak Agung Hepi ◽  
Ni Luh Yulianti ◽  
Yohanes Setiyo

Suhu pengeringan dan ketebalan irisan merupakan dua hal yang mempengaruhi proses pengeringan jahe merah. Penelitian dirancang dengan tujuan untuk mendapatkan kombinasi suhu pengeringan dan ketebalan irisan optimum melalui Response Surface Methodology (RSM), serta memperoleh model matematika untuk memprediksi kadar air, aktivitas air, kadar abu dan energi panas penguapan. Pengujian dilakukan untuk mengetahui pengaruh suhu dan ketebalan irisan terhadap respon kadar air, aktivitas air, kadar abu dan energi panas penguapan. Pengolahan data menggunakan aplikasi Design Expert ® 12. Hasil penelitian menunjukkan model linier untuk memprediksi respon kadar air dan kadar abu. Model kuadratik untuk memprediksi respon aktivitas air dan energi panas penguapan. Hasil verifikasi model menunjukkan kombinasi suhu pengeringan dan ketebalan irisan optimum terpilih adalah 67,30C dan 3 mm. Proses pengeringan dengan kombinasi suhu pengeringan dan ketebalan irisan optimum menghasilkan nilai aktual aktivitas air 0,393 aw, kadar air 9,877%, kadar abu 3,513% dan energi panas penguapan sebesar 68,354 kJ/Jam. Respon dari kombinasi suhu pengeringan dan ketebalan irisan optimum terpilih dapat memenuhi keinginan sesuai kriteria dengan nilai desirability 81,3%.   Drying temperature and thickness of slices are two things that affect the drying process of red ginger. The research was designed with the aim of obtaining a combination of drying temperature and optimum slice thickness through the Response Surface Methodology (RSM), as well as obtaining mathematical models to predict water content, water activity, ash content and evaporation heat energy. Testing was conducted to determine the effect of the temperature and thickness of the slices on the response of water content, water activity, ash content and evaporation heat energy. Data processing using design expert application ® 12. The results showed linear models to predict the response of water levels and ash levels. Quadratic models to predict the response of water activity and evaporation heat energy. Model verification results show the combination of drying temperature and optimum slice thickness selected is 67.30C and 3 mm. The drying process with a combination of drying temperature and optimum slice thickness resulted in an actual water activity value of 0.393 aw, water content of 9.877%, ash content of 3.513% and evaporation heat energy of 68,354 kJ/h. The response of the combination drying temperature and thickness of selected optimum slices can meet the wishes according to the criteria with a desirability value of 81.3%.


Sign in / Sign up

Export Citation Format

Share Document