Optimization of Design for Air Gap Sensor Using the Response Surface Methodology

Author(s):  
Kitisak Chimklin ◽  
Chatchapol Chungchoo

In Hard Disk Drive (HDD) manufacturing, there is always a concern about the cutting defects that are caused by residual cutting chips. Only a small amount of 10 μm chips (act as the air gap) can cause the workpiece to tilt and shift from the correct position, and thus affect the dimension of the workpiece (mainly the Base HDD). For this reason, researchers adapted the adjustable micrometer as a simulation device that resembles the air gap for the design of the Air Gap Sensor Module. The design of experiments using response surface methodology will be studied to confirm the appropriate factors of the prototype. This study reports the optimization of the main factors that affect Air Gap Sensor Module condition: Air Nozzle Diameter 2.303 mm, Air Pressure 0.1 MPa, and Sampling Time 645 ms, which has a high square of the coefficient correlation (R-squared = 99.0%) with a close relationship between gap distance and air pressure. The relationship between these variables is mostly linear. The R-squared error percentage of actual value is less than 0.93% compared to predicted value. The mathematical model results and experimental values were consistent and able to predict response variables. The Air Gap Sensor Module can provide the measurement results in micron ccuracy and displays light and beep to confirm as acceptable or reject gap conditions with the uncertainty of measurement ± 0.001 mm.

2017 ◽  
Vol 68 (2) ◽  
pp. 331-336
Author(s):  
Gabriela Isopencu ◽  
Mirela Marfa ◽  
Iuliana Jipa ◽  
Marta Stroescu ◽  
Anicuta Stoica Guzun ◽  
...  

Nigella sativa, also known as black cumin, an annual herbaceous plant growing especially in Mediterranean countries, has recently gained considerable interest not only for its use as spice and condiment but also for its healthy properties of the fixed and essential oil and its potential as a biofuel. Nigella sativa seeds fixed oil, due to its high content in linoleic acid followed by oleic and palmitic acid, could be beneficial to human health. The objective of this study is to determine the optimum conditions for the solvent extraction of Nigella sativa seeds fixed oil using a three-level, three-factor Box-Behnken design (BBD) under response surface methodology (RSM). The obtained experimental data, fitted by a second-order polynomial equation were analysed by Pareto analysis of variance (ANOVA). From a total of 10 coefficients of the statistical model only 5 are important. The obtained experimental values agreed with the predicted ones.


Author(s):  
Wissam Zam ◽  
Ali Ali ◽  
Dimah Saleem ◽  
Sahar Alali

In recent years, Centaurium erythraea extracts have attracted much research attention in the context of prevention or treatment of many diseases due to its bioactive compounds content and antioxidant activity. The antioxidants of C. erythraea are very effective as they possess excellent antioxidant activity. Thus, it can be used as a safe and natural food preservative. The aim of this study is to make extracts more effective by optimizing the extraction conditions of the phenolics and antioxidants from C. erythraea using response surface methodology (RSM) based on a central composite design (CCD). Two process variables (Methanol volume fraction and solid - solvent ratio) were evaluated at five levels (13 experimental designs). Multiple regression analyses were performed to obtain quadratic polynomial equations using RSM; each response was fitted by a quadratic model. The adequacy of the models was proven using the analysis of variance (ANOVA). The significant effects of the factors and their interactions on the extraction efficiency were investigated at 95% confidence interval. RSM indicated that the optimal extraction conditions were 71% methanol volume fraction and 2.2:10 solid:solvent ratio. Predicted values thus obtained were close to the experimental values indicating suitability of the model.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 711 ◽  
Author(s):  
Arief Md Yusof ◽  
Siti Abd Gani ◽  
Uswatun Zaidan ◽  
Mohd Halmi ◽  
Badrul Zainudin

This study investigates the ultrasound-assisted extraction of flavonoids from Malaysian cocoa shell extracts, and optimization using response surface methodology. There are three variables involved in this study, namely: ethanol concentration (70–90 v/v %), temperature (45–65 °C), and ultrasound irradiation time (30–60 min). All of the data were collected and analyzed for variance (ANOVA). The coefficient of determination (R2) and the model was significant in interaction between all variables (98% and p < 0.0001, respectively). In addition, the lack of fit test for the model was not of significance, with p > 0.0684. The ethanol concentration, temperature, and ultrasound irradiation time that yielded the maximum value of the total flavonoid content (TFC; 7.47 mg RE/g dried weight (DW)) was 80%, 55 °C, and 45 min, respectively. The optimum value from the validation of the experimental TFC was 7.23 ± 0.15 mg of rutin, equivalent per gram of extract with ethanol concentration, temperature, and ultrasound irradiation time values of 74.20%, 49.99 °C, and 42.82 min, respectively. While the modelled equation fits the data, the T-test is not significant, suggesting that the experimental values agree with those predicted by the response surface methodology models.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Agarwal ◽  
A. Mondal ◽  
P.K. Mishra ◽  
P. Srivastava

AbstractThe present work describes the statistical process optimization of a lowcost production process of PLA using organometallic (stannous octoate) compounds. The process optimization for both lactide and polylactide, was developed by factorial design and response surface methodology. The influence of different experimental parameters such as reaction temperature, time, concentration of catalyst and co-initiator concentration on the yield of lactide and polylactide has been evaluated. There are many studies reported on the synthesis of polylactide but no earlier study exists for the application of statistical analysis in determining the interactions among the process variables for lactide and polylactide production. Central composite experimental design with multiple linear regression has been used to estimate the coefficients of the polynomial model equation for the yield(s) of both lactide and polylactide. The statistical significance of polynomial model equation was validated by F test (ANOVA). Determination coefficient (R2) values found to be 0.913 and 0.958 for lactide and polylactide respectively, states that predicted values were in good agreement with the experimental values. Results of the statistical analysis showed that the model fits in all cases. Above synthesised polymer was characterized by FT-IR, 1H-NMR, DSC and GPC to confirm the polymer structure and properties.


Author(s):  
K. Boujounoui ◽  
A. Abidi ◽  
A. Baçaoui ◽  
K. El Amari ◽  
A. Yaacoubi

SYNOPSIS Response surface methodology (RSM), central composite design (CCD), and desirability functions were used for modelling and optimization of the operating factors in chlorite and talc (collectively termed 'mica') flotation. The influence of pulp pH, cyanide (NaCN) consumption, and particle size was studied with the aim of optimizing ssilicate flotation while minimizing recoveries of galena, chalcopyrite, and sphalerite. Flotation tests were carried out on a representative sample of a complex sulphide ore from Draa Sfar mine (Morocco). The model predictions for the flotation of each of the minerals concerned were found to be in good agreement with experimental values, with R2 values of 0.91, 0.98, 0.99, and 0.90 for mica, galena, chalcopyrite, and sphalerite recoveries, respectively. RSM combined with desirability functions and CCD was successfully applied for the modelling of mica flotation, considering simultaneously the four flotation responses to achieve the maximum recovery of mica and minimal loss of Pb, Cu, and Zn to the flotation concentrate. Keywords: chlorite, talc, flotation, response surface methodology, central composite design, optimization.


2019 ◽  
Vol 2 (1) ◽  
pp. 332-342
Author(s):  
Ha Thi Ngoc Lai ◽  
Phuong Viet Nguyen ◽  
Hoai Thi Tran ◽  
Viet Ha Thi Dao ◽  
Ha Hai Hoang

Chlorogenic acid is a natural antioxidant that is widespread in the plant kingdom and can be found at a high content level in green coffee beans. This secondary metabolite in green coffee beans has potent biological properties including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-hypertension, and anticonvulsant. In this study, the extraction of chlorogenic acid from Vietnamese green coffee beans was optimized using the response surface methodology. A second-order polynomial model with three important variables (liquid-to-solid ratio, temperature, and extraction time) was used. A rotatable central composite design consisting of 21 experimental runs with three replicates at the center point was applied to describe the experimental data. The experimental results properly conformed to the constructed model (R2 = 0.8549). The optimized conditions were as follows: 40% ethanol (v/v), a liquid-to-solid ratio of 11.77, at 85oC for 64 min. Four extractions were performed in parallel using the optimal conditions to validate the model. The experimental values highly agreed with the predicted value (P <0.05).


Separations ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 134
Author(s):  
Nenghui Li ◽  
Jing Li ◽  
Dongxia Ding ◽  
Jianming Xie ◽  
Jing Zhang ◽  
...  

To determine the optimum parameters for extracting three carotenoids including zeaxanthin, lutein epoxide, and violaxanthin from pepper leaves by response surface methodology (RSM), a solvent of acetone and ethyl acetate (1:2) was used to extract carotenoids with four independent factors: ultrasound time (20–60 min); ratio of sample to solvent (1:12–1:4); saponification time (10–50 min); and concentration of saponification solution (KOH–methanol) (10–30%). A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to zeaxanthin (R2 = 75.95%, p < 0.0197), lutein epoxide (R2 = 90.24%, p < 0.0001), and violaxanthin (R2 = 73.84%, p < 0.0809) content. The optimum joint extraction conditions of zeaxanthin, lutein epoxide, and violaxanthin were 40 min, 1:8, 32 min, and 20%, respectively. The optimal predicted contents for zeaxanthin (0.823022 µg/g DW), lutein epoxide (4.03684 µg/g dry; DW—dry weight), and violaxanthin (16.1972 µg/g DW) in extraction had little difference with the actual experimental values obtained under the optimum extraction conditions for each response: zeaxanthin (0.8118 µg/g DW), lutein epoxide (3.9497 µg/g DW), and violaxanthin (16.1590 µg/g DW), which provides a theoretical basis and method for cultivating new varieties at low temperatures and weak light resistance.


Author(s):  
Israa Mahmud ◽  
Mohamed E. S. Mirghani ◽  
Faridah Yusof ◽  
Ma'an Al-khatib

Dietary polyphenols exist in two forms; extractable polyphenols (EPP) or compounds solubilised by aqueous/organic solvents, and non-extractable polyphenols (NEPP) or compounds remain in the corresponding residues after the extraction. At present, most researchers focus on EEP fractions, while NEPP is neglected. Thus, this study aimed to release NEPP from the remaining powder residue of Barhi date palm kernels (BDPK) with acid hydrolysis. The related extraction conditions were determined and optimised using response surface methodology (RSM) for maximisation of NEPP with highest cytotoxic and antioxidant activities. The face-centred central composite design (FCCCD) was used to establish treatments based on three independent variables, namely; extraction temperature, time, and solvent/sample ratio. Under the optimal conditions, the experimental values for DPPH radical-scavenging capacity of NEPP (IC50=57.52µg/mL), and cytotoxicity of NEPP against A549 and HT29 cells were IC50=17.4 µg/mL and 31.4µg/mL, respectively. The experimental values were in agreement with those predicted by RSM models, confirming the suitability of the model employed and the success of RSM for optimisation of the extraction conditions for NEPP from BDPK. These results indicate that NEPP from industrial date fruit waste could be a promising candidate as natural antioxidants with significant antiproliferation effect against A549 and HT29 cancer cells in-vitro.


2017 ◽  
Vol 25 (0) ◽  
pp. 108-113 ◽  
Author(s):  
Maciej Thomas ◽  
Krzysztof Barbusiński ◽  
Katarzyna Kalemba ◽  
Paweł Jan Piskorz ◽  
Violetta Kozik ◽  
...  

This article presents the possibility of using the classical Fenton process (Fe(II)/H2O2) to purify synthetic textile wastewater (COD=1872 mg O2/dm3, TOC=660 mg/dm3) containing azo dye Anilan Blue GRL 250% (200 mg/dm3) and Sodium Lauryl Sulphate (SLS) as anionic surfactant at a concentration of 95 mg/dm3. Model studies were carried out using RSM, obtaining a good fit of approximated values to experimental values (R2=0.9461 and R2adj=0.7379). For optimal process parameters (pH 3, Fe(II) 0.85 g/dm3, H2O2 14.5 g/dm3), complete decolourisation (<10 mg Pt/dm3) was achieved as well as a reduction in COD, TOC and SLS concentrations to 83%, 44% and 98%, respectively.


2020 ◽  
Vol 19 (03) ◽  
pp. 65-74
Author(s):  
Tan D. Nguyen

Response surface methodology was applied to optimize the extraction of phenolic compounds from fresh Pouzolzia zeylanica plant using hot water as a solvent. A central composite design (CCD) in form (23+star) was used to investigate the effects of two independent variables, namely, extraction temperature (70 to 90oC) and extraction time (20 to 40 min). The dependent variables were the content of anthocyanin, flavonoid, polyphenol, tannin and total soluble solids of extracted solution. A second-order polynomial model was used for predicting the response. The results showed that the optimal extraction process was obtained at 84.4oC for 31.7 min. The experimental values agreed with predicted within a 95% confidence interval. Consequently, the contents of anthocyanin, flavonoid, polyphenol and tannin were 38.66 mgCE/100 g, 3.01 mgQE/g, 5.17 mgGAE/g, 4.07 mgTAE/g fresh weight, and total soluble solids content was 0.73%, respectively.


Sign in / Sign up

Export Citation Format

Share Document