Parallel Dynamic Artificial Neural Network for Temperature and Moisture Content Predictions in Microwave-Vacuum Dried Tomato Slices

2007 ◽  
Vol 2 (3) ◽  
Author(s):  
Poonpat Poonnoy ◽  
Ampawan Tansakul ◽  
Manjeet Chinnan

Temperature (T) and moisture content (MC) of non-homogenous food undergoing microwave-vacuum (MV) drying (MVD) are directly dependent on microwave power, vacuum pressure, and the product's physical properties. A two-hidden-layer Artificial Neural Network (ANN) model was developed in an earlier study to predict temperature and moisture content of the product at a given time based on the present state of product conditions and process control parameters. This approach either provided lowest error in temperature prediction or in moisture content prediction but not the lowest error in both the prediction parameters simultaneously. The main objective of this work was to improve the performance of the ANN model for temperature and moisture content predictions in MV dried samples. Experimental data obtained from MVD of tomato slices at different drying conditions was normalized and divided into two groups for training and validating. The parallel dynamic ANN model consisted of two double-hidden-layer feed-forward ANN models with varying node numbers (10, 20, and 30). These models were separately trained, simultaneously for moisture content as well as temperature, with the Levenberg-Marquardt algorithm. Inputs for the ANN models were magnetron on-off status, vacuum pressure, temperature, and moisture content at time `ti'. The previous temperature and moisture content data at time `ti-1, i-2, …, i-n' where n = 0, 10, 20, and 30 were also added to the input layer. Outputs from the ANN models were temperature and moisture content at time `ti+1'. The results indicated that the dynamic ANN model working in parallel with the previous temperature and moisture content data provided results that are more accurate and required less training time than those of ordinary ANN models. Model simulation may supply essential information regarding temperature and moisture content of non-homogenous foods corresponding to microwave power and vacuum pressure levels to the predictive control system. Therefore, improved drying efficiencies and thermal damage prevention may be achieved.

Author(s):  
Poonpat Poonnoy ◽  
Ampawan Tansakul ◽  
Manjeet Chinnan

The drying rate of a mushroom undergoing microwave-vacuum (MV) drying (MVD) was controlled by moisture dissipation and was dependent on vacuum pressure levels. The main objective of this work was to develop artificial neural network (ANN) model to predict moisture ratio of MV-dried mushrooms. One-hidden-layer feed-forward ANN models were trained and validated with experimental data. The Levenberg-Marquardt algorithm was utilized in regulating the ANN model weights and biases. Inputs for ANN models were vacuum pressure and drying time. Output from ANN models was moisture ratio at a given drying time. Reduced chi-square (X 2) and root mean square error (RMSE), and residual sum of squares (RSS) of the results from ANN models were calculated and compared with those of a modified Page's model (an experimental-based mathematical model), which is commonly used in the literature. The X 2, RMSE, and RSS of the ANN model (2.272 x 10 -5, 4.023 x 10 -3, and 3.204 x 10 -3, respectively) were found to be lower than those of the modified Page's model (6.692 x 10 -4, 2.561 x 10 -2, and 12.98 x 10 -2, respectively). These results indicate that the feed-forward ANN model represented the drying characteristics of mushrooms better than the modified Page's model. Therefore, the ANN model could be considered as a better tool for estimation of the moisture content of mushrooms than by the modified Page's model.


Author(s):  
Aseel Shakir I. Hilaiwah ◽  
Hanan Abed Alwally Abed Allah ◽  
Basim Akhudir Abbas ◽  
Tole Sutikno

<span>An extensive review of the artificial neural network (ANN) is presented in this paper. Previous studies review the artificial neural network (ANN) based on the approaches (algorithms) used or based on the types of the artificial neural network (ANN). The presented paper reviews the ANN based on the goal of the ANN (methods, and layers), which become the main objective of this paper. As a famous artificial intelligent model, ANN mimics the human nervous system in handling the information transmited by different nodes (also known as neurons) in this model. These nodes are stacked in layers and work collectively to bring about solution to complex problems. Numerous structures exist for ANN and each of these structures is designed to addressa a specific task. Basically, the ANN architecture is comprised of 3 different layers wherein the first layer rpresents the input layer that consist of several input nodes that represent the input parameterfor the model. The hidden layer is te second layer and consists of a hidden layer of neurons. The neurons in this layer are directly connected to the neurons in the output layer. The third layer is the output layer which is the models’ response layer. The output layer neurons have the activation functions for the calculation of the ANN final output. The connection between the nodes in the ANN model is mediated by synaptic weights. This paper is a comprehensive study of ANN models and their layers.</span>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhonghui Thong ◽  
Jolena Ying Ying Tan ◽  
Eileen Shuzhen Loo ◽  
Yu Wei Phua ◽  
Xavier Liang Shun Chan ◽  
...  

AbstractRegression models are often used to predict age of an individual based on methylation patterns. Artificial neural network (ANN) however was recently shown to be more accurate for age prediction. Additionally, the impact of ethnicity and sex on our previous regression model have not been studied. Furthermore, there is currently no age prediction study investigating the lower limit of input DNA at the bisulfite treatment stage prior to pyrosequencing. Herein, we evaluated both regression and ANN models, and the impact of ethnicity and sex on age prediction for 333 local blood samples using three loci on the pyrosequencing platform. Subsequently, we trained a one locus-based ANN model to reduce the amount of DNA used. We demonstrated that the ANN model has a higher accuracy of age prediction than the regression model. Additionally, we showed that ethnicity did not affect age prediction among local Chinese, Malays and Indians. Although the predicted age of males were marginally overestimated, sex did not impact the accuracy of age prediction. Lastly, we present a one locus, dual CpG model using 25 ng of input DNA that is sufficient for forensic age prediction. In conclusion, the two ANN models validated would be useful for age prediction to provide forensic intelligence leads.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2013 ◽  
Vol 69 (4) ◽  
pp. 768-774 ◽  
Author(s):  
André L. N. Mota ◽  
Osvaldo Chiavone-Filho ◽  
Syllos S. da Silva ◽  
Edson L. Foletto ◽  
José E. F. Moraes ◽  
...  

An artificial neural network (ANN) was implemented for modeling phenol mineralization in aqueous solution using the photo-Fenton process. The experiments were conducted in a photochemical multi-lamp reactor equipped with twelve fluorescent black light lamps (40 W each) irradiating UV light. A three-layer neural network was optimized in order to model the behavior of the process. The concentrations of ferrous ions and hydrogen peroxide, and the reaction time were introduced as inputs of the network and the efficiency of phenol mineralization was expressed in terms of dissolved organic carbon (DOC) as an output. Both concentrations of Fe2+ and H2O2 were shown to be significant parameters on the phenol mineralization process. The ANN model provided the best result through the application of six neurons in the hidden layer, resulting in a high determination coefficient. The ANN model was shown to be efficient in the simulation of phenol mineralization through the photo-Fenton process using a multi-lamp reactor.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hung Vo Thanh ◽  
Yuichi Sugai ◽  
Kyuro Sasaki

Abstract Residual Oil Zones (ROZs) become potential formations for Carbon Capture, Utilization, and Storage (CCUS). Although the growing attention in ROZs, there is a lack of studies to propose the fast tool for evaluating the performance of a CO2 injection process. In this paper, we introduce the application of artificial neural network (ANN) for predicting the oil recovery and CO2 storage capacity in ROZs. The uncertainties parameters, including the geological factors and well operations, were used for generating the training database. Then, a total of 351 numerical samples were simulated and created the Cumulative oil production, Cumulative CO2 storage, and Cumulative CO2 retained. The results indicated that the developed ANN model had an excellent prediction performance with a high correlation coefficient (R2) was over 0.98 on comparing with objective values, and the total root mean square error of less than 2%. Also, the accuracy and stability of ANN models were validated for five real ROZs in the Permian Basin. The predictive results were an excellent agreement between ANN predictions and field report data. These results indicated that the ANN model could predict the CO2 storage and oil recovery with high accuracy, and it can be applied as a robust tool to determine the feasibility in the early stage of CCUS in ROZs. Finally, the prospective application of the developed ANN model was assessed by optimization CO2-EOR and storage projects. The developed ANN models reduced the computational time for the optimization process in ROZs.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Kraiwut Tuntisukrarom ◽  
Raungrut Cheerarot

The objective of this work was to examine the compressive strength behavior of ground bottom ash (GBA) concrete by using an artificial neural network. Four input parameters, specifically, the water-to-binder ratio (WB), percentage replacement of GBA (PR), median particle size of GBA (PS), and age of concrete (AC), were considered for this prediction. The results indicated that all four considered parameters affect the strength development of concrete, and GBA with a high fineness can act as a good pozzolanic material. The optimal ANN model had an architecture with two hidden layers, with six neurons in the first hidden layer and one neuron in the second hidden layer. The proposed ANN-based explicit equation represented a highly accurate predictive model, for which the statistical values of R2 were higher than 0.996. Moreover, the compressive strength behavior determined using the optimal ANN model closely followed the trend lines and surface plots of the experimental results.


2020 ◽  
Vol 66 (No. 1) ◽  
pp. 1-7
Author(s):  
Mahdi Rashvand ◽  
Mahmoud Soltani Firouz

Olives are one of the most important agriculture crops in the world, which are harvested in different stages of growth for various uses. One of the ways to detect the adequate time to process the olives is to determine their moisture content. In this study, to determine the moisture content of olives, a dielectric technique was used in seven periods of harvesting and three different varieties of olive including Oily, Mary and Fishemi. The dielectric properties of the olive fruits were measured using an electronic device in the range of 0.1–30 MHz. Artificial Neural Network (ANN) and Support Vector Regression (SVR) methods were applied to develop the prediction models by using the obtained data acquired by the system. The best results (R = 0.999 and MSE = 0.014) were obtained by the ANN model with a topology of 384–12–1 (384 features in the input vector, 12 neurons in the hidden layer and 1 output). The results obtained indicated the acceptable accuracy of the dielectric technique combined with the ANN model.


2019 ◽  
Vol 8 (10) ◽  
pp. 1592 ◽  
Author(s):  
Kyoung Hwa Lee ◽  
Jae June Dong ◽  
Su Jin Jeong ◽  
Myeong-Hun Chae ◽  
Byeong Soo Lee ◽  
...  

An adequate model for predicting bacteraemia has not yet been developed. This study aimed to evaluate the performance of an artificial neural network (ANN)-based prediction model in comparison with previous statistical models. The performance of multi-layer perceptron (MLP), a representative ANN model, was verified via comparison with a non-neural network model. A total of 1260 bacteraemia episodes were identified in 13,402 patients. In MLP with 128 hidden layer nodes, the area under the receiver operating characteristic curve (AUC) of the prediction performance was 0.729 (95% confidence interval [CI]; 0.712–0.728), while in MLP with 256 hidden layer nodes, it was 0.727 (95% CI; 0.713–0.727). In a conventional Bayesian statistical method, the AUC was 0.7. The aforementioned two MLP models exhibited the highest sensitivity (0.810). The ranking of clinical variables was used to describe the influential power of the prediction. Serum alkaline phosphatase was one of the most influential clinical variables, and one-out search was the best ranking method for measuring the influence of the clinical variables. Furthermore, adding variables beyond the 10 top-ranking ones did not significantly affect the prediction of bacteraemia. The ANN model is not inferior to conventional statistical approaches. Bacteraemia can be predicted using only the top 10 clinical variables determined by a ranking method, and the model can be used in clinical practice by applying real-time monitoring.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


Sign in / Sign up

Export Citation Format

Share Document