scholarly journals Measurement of Young's Modulus and Poisson's Ratio of Intact Rock Foundation

1998 ◽  
Vol 1 ◽  
pp. 23-34
Author(s):  
Yasuo TAKASHIMA
2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Shiwei Lu ◽  
Chuanbo Zhou ◽  
Zhen Zhang ◽  
Ling Ji ◽  
Nan Jiang

The open-pit mining slopes continue to become higher and steeper with the continuous exploitation of near-surface mineral resources. The blasting excavation exerts a significance influence on the slope stability. In fact, intact rock slopes do not exist and slope stability is controlled by the geological defects. In this paper, the stability of a rock slope imbedded with a fault is considered. The P-wave component of blasting seismic waves is focused on and the fault is simplified as a semi-infinite crack. In background of Daye iron mine, the peak particle velocity (PPV) threshold is determined based on the linear elastic fracture dynamics. The influence of frequency, Young's modulus, and Poisson's ratio is studied to modify the PPV threshold. Results show that (1) the PPV threshold decreases with the increasing Young's modulus and Poisson's ratio, but increases with the increasing frequency; (2) the initiation angle is immune to Young's modulus and the frequency, and only depends on the Poisson's ratio; (3) the PPV criterion is finally determined as 1.47 cm/s when the frequency f ≤ 10 Hz, 1.47 cm/s–3.30 cm/s when 10 Hz < f ≤ 50 Hz and 3.37 cm/s–6.59 cm/s when f > 50 Hz, which are far less than that of intact rock slopes; (4) The north slope is quite safe if the proposed PPV threshold is not violated due to the variation range of the initiation angle θ0.


2019 ◽  
Vol 41 (1) ◽  
pp. 21-32 ◽  
Author(s):  
M. Davarpanah ◽  
G. Somodi ◽  
L. Kovács ◽  
B. Vásárhelyi

AbstractUnderstanding the quality of intact rock is one of the most important parts of any engineering projects in the field of rock mechanics. The expression of correlations between the engineering properties of intact rock has always been the scope of experimental research, driven by the need to depict the actual behaviour of rock and to calculate most accurately the design parameters. To determine the behaviour of intact rock, the value of important mechanical parameters such as Young’s modulus (E), Poisson’s ratio (ν) and the strength of rock (σcd) was calculated. Recently, for modelling the behaviour of intact rock, the crack initiation stress (σci) is another important parameter, together with the strain (σ). The ratio of Young’s modulus and the strength of rock is the modulus ratio (MR), which can be used for calculations. These parameters are extensively used in rock engineering when the deformation of different structural elements of underground storage, caverns, tunnels or mining opening must be computed. The objective of this paper is to investigate the relationship between these parameters for Hungarian granitic rock samples. To achieve this goal, the modulus ratio (MR = E/σc) of 50 granitic rocks collected from Bátaapáti radioactive waste repository was examined. Fifty high-precision uniaxial compressive tests were conducted on strong (σc >100 MPa) rock samples, exhibiting the wide range of elastic modulus (E = 57.425–88.937 GPa), uniaxial compressive strength (σc = 133.34–213.04 MPa) and Poisson’s ratio (ν = 0.18–0.32). The observed value (MR = 326–597) and mean value of MR = 439.4 are compared with the results of similar previous researches. Moreover, the statistical analysis for all studied rocks was performed and the relationshipbetween MR and other mechanical parameters such as maximum axial strain $\left( {{\varepsilon }_{\text{a,}\,\text{max}}} \right)$for studied rocks was discussed.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
Fang Li ◽  
Liuxi Cai ◽  
Shun-sen Wang ◽  
Zhenping Feng

Abstract Finite element method (FEM) was used to study the stress peak of stress S11 (Radial stress component in X-axis) on the steam turbine blade surface of four typical erosion-resistant coatings (Fe2B, CrN, Cr3C2-NiCr and Al2O3-13%TiO2). The effect of four parameters, such as impact velocity, coating thickness, Young's modulus and Poisson's ratio on the stress peak of stress S11 were analyzed. Results show that: the position of tensile stress peak and compressive stress peak of stress S11 are far away from the impact center point with the increase of impact velocity. When coating thickness is equal to or greater than 10μm, the magnitude of tensile stress peak of stress S11 on the four coating surfaces does not change with the coating thickness at different impact velocities. When coating thickness is equal to or greater than 2μm, the magnitude of tensile stress peak of stress S11 of four coatings show a trend of increasing first and then decreasing with the increase of Young's modulus. Meanwhile, the larger the Poisson's ratio, the smaller the tensile stress peak of stress S11. After optimization, When coating thickness is 2μm, Poisson's ratio is 0.35 and Young's modulus is 800 GPa, the Fe2B coating has the strongest erosion resistance under the same impact conditions, followed by Cr3C2-NiCr, CrN, and the Al2O3- 13%TiO2 coating, Al2O3-13%TiO2 coating has the worst erosion resistance.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


Sign in / Sign up

Export Citation Format

Share Document