Analysis of earth pressures acting on the top of diaphragm wall and its neighborhood in the embankment dam with diaphragm wall under soil core.

1992 ◽  
pp. 69-78
Author(s):  
Hiroyuki WATANABE ◽  
Kiichi KANAZAWA ◽  
Minoru TAKADA ◽  
Takashi SUZUKI
2018 ◽  
Vol 55 (5) ◽  
pp. 720-735 ◽  
Author(s):  
Yi Rui ◽  
Mei Yin

Thermo-active diaphragm walls that combine load bearing ability with a ground source heat pump (GSHP) are considered to be one of the new technologies in geotechnical engineering. Despite the vast range of potential applications, current thermo-active diaphragm wall designs have very limited use from a geotechnical aspect. This paper investigates the wall–soil interaction behaviour of a thermo-active diaphragm wall by conducting a thermo-hydro-mechanical finite element analysis. The GSHP operates by circulating cold coolant into the thermo-active diaphragm wall during winter. Soil contraction and small changes in the earth pressures acting on the wall are observed. The strain reversal effect makes the soil stiffness increase when the wall moves in the unexcavated side direction, and hence gives different trends for long-term wall movements compared to the linear elastic model. The GSHP operation makes the wall move in a cyclic manner, and the seasonal variation is approximately 0.5–1 mm, caused by two factors: the thermal effects on the deformation of the diaphragm wall itself and the thermally induced volume change of the soil and pore water. In addition, it is found that the change in bending moment of the wall due to the seasonal GSHP cycle is caused mainly by the thermal differential across the wall during the winter, because the seasonal changes in earth pressures acting on the diaphragm wall are very limited.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Weiming Gong

To investigate the bearing characteristics of diaphragm wall foundation under combined load, the results from elasto-plastic analyses of 3D finite element models (FEM) were presented in this study. The vertical load of the diaphragm wall foundation is borne by inner and outer side resistance, resistance of soil core and the end of wall, respectively. Moreover, the sum of end resistance and soil core resistance accounts for about 75% of the vertical load. The mobilization mechanism and distribution of side resistance of the foundation were also analyzed. It is clarified that the mobilization characteristics of inner and outer side resistance of the wall are completely opposite. Due to the combined load, the horizontal load has an amplification effect on the settlement of the foundation. Additionally, the calculation methods of the Eight-component Winkler spring model and rigid pile displacement were used for determining the vertical load-bearing capacity and the overturning stability. A comparison between results from the FEM and the theoretical calculation methods showed that the results of the numerical simulation properly coincided with that of the displacement solution of theoretical model. The conclusions obtained by the above methods all indicate that the foundation has the characteristics of overall overturning failure under the combined load.


2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Jicheng Shu ◽  
Jianping Sun ◽  
Dingwen Zhang ◽  
Huanwei Wei

The performance of a diaphragm wall-anchor structure in spring area in Jinan city, China, is studied. Based on field measured data, lateral wall deflections, lateral soil movements, horizontal displacement of the capping beam, the maximum lateral wall deflection, ground surface settlement, lateral earth pressures on diaphragm wall, internal force of diaphragm wall, axial anchoring forces, settlements of adjacent building, and pore-water pressure are investigated. The results indicate that the maximum deflections of the lateral wall are 0.07%∼0.18% of the excavation depth (He). The ground surface settlement influence zone extends beyond 2.5He from the pit for this project. The δv,max ranges from 0.67 δh,max to 1.0 δh,max. The maximum lateral active earth pressures on diaphragm walls above the excavation bases range between 0.4He and 0.6He. The axial anchoring forces of the top three layers of anchors change significantly during the excavation while the axial anchoring force of the fourth layer of anchor is constant. The deformation of surrounding building has three stages, including a uniform subsidence stage, an accelerated subsidence stage, and a stable subsidence stage.


2016 ◽  
Vol 2016 ◽  
pp. 1-17
Author(s):  
Jiu-jiang Wu ◽  
Qian-gong Cheng ◽  
Hua Wen ◽  
Yan Li ◽  
Jian-lei Zhang ◽  
...  

Lattice-shaped diaphragm wall (hereafter referring to LSDW) is a new type of bridge foundation, and the relevant investigation on its horizontal behaviors is scant. This paper is devoted to the numerical study of the comparison on the static and seismic responses of LSDW and pile group under similar material quantity in soft soil. It can be found that the horizontal bearing capacity of LSDW is considerably larger than that of pile group, and the deformation pattern of LSDW basically appears to be an overall toppling while pile group clearly shows a local bending deformation pattern during the static loading process. The acceleration response and the acceleration amplification effects of LSDW are slightly greater than that of pile group due to the existing of soil core and the difference on the ability of energy dissipation. The horizontal displacement response of pile group is close to that of LSDW at first and becomes stronger than that of LSDW due to the generation of plastic soil deformation near the pile-soil interface at last. The pile body may be broken in larger potential than LSDW especially when its horizontal displacement is notable. Compared with pile group, LSDW can be a good option for being served as a lateral bearing or an earthquake-proof foundation in soft soil.


1953 ◽  
Author(s):  
P. Habib ◽  
R. Marchand ◽  
Severine Britt
Keyword(s):  

1991 ◽  
Vol 55 (6) ◽  
pp. 1792-1795 ◽  
Author(s):  
J. M. H. Hendrickx ◽  
C. J. Ritsema ◽  
O. H. Boersma ◽  
L. W. Dekker ◽  
W. Hamminga ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 118
Author(s):  
Ziqiang Liu ◽  
Hui Wei ◽  
Jiaen Zhang ◽  
Muhammad Saleem ◽  
Yanan He ◽  
...  

Acid rain (AR), as a global environmental threat, has profoundly adverse effects on natural soil ecosystems. Microorganisms involved in the nitrogen (N) cycle regulate the global N balance and climate stabilization, but little is known whether and how AR influences the structure and complexity of these microbial communities. Herein, we conducted an intact soil core experiment by manipulating the acidity of simulated rain (pH 7.5 (control, CK) vs. pH 4.0 (AR)) in subtropical agricultural soil, to reveal the differences in the structure and complexity of soil nitrifying and denitrifying microbiota using Illumina amplicon sequencing of functional genes (amoA, nirS, and nosZ). Networks of ammonia-oxidizing archaea (AOA) and nirS-carrying denitrifiers in AR treatment were less complex with fewer nodes and lower connectivity, while network of nosZ-carrying denitrifiers in AR treatment had higher complexity and connectivity relative to CK. Supporting this, AR reduced the abundance of keystone taxa in networks of AOA and nirS-carrying denitrifiers, but increased the abundance of keystone taxa in nosZ-carrying denitrifiers network. However, AR did not alter the community structure of AOA, ammonia-oxidizing bacteria (AOB), nirS-, and nosZ-carrying denitrifiers. Moreover, AR did not change soil N2O emissions during the experimental period. AOB community structure significantly correlated with content of soil available phosphorus (P), while the community structures of nirS- and nosZ-carrying denitrifiers both correlated with soil pH and available P content. Soil N2O emission was mainly driven by the nirS-carrying denitrifiers. Our results present new perspective on the impacts of AR on soil N-cycle microbial network complexity and keystone taxa in the context of global changes.


2021 ◽  
Vol 13 (6) ◽  
pp. 1137
Author(s):  
Xihong Cui ◽  
Zheng Zhang ◽  
Li Guo ◽  
Xinbo Liu ◽  
Zhenxian Quan ◽  
...  

To analyze the root-soil water relationship at the stand level, we integrated ground-penetrating radar (GPR), which characterized the distribution of lateral coarse roots (>2 mm in diameter) of shrubs (Caragana microphylla Lam.), with soil core sampling, which mapped soil water content (SWC) distribution. GPR surveys and soil sampling were carried out in two plots (Plot 1 in 2017 and Plot 2 in 2018) with the same size (30 × 30 m2) in the sandy soil of the semi-arid shrubland in northern China. First, the survey area was divided into five depth intervals, i.e., 0–20, 20–40, 40–60, 60–80, and 80–100 cm. Each depth interval was then divided into three zones in the horizontal direction, including root-rich canopy-covered area, root-rich canopy-free area, and root-poor area, to indicate different surface distances to the canopy. The generalized additive models (GAMs) were used to analyze the correlation between root distribution density and SWC after the spatial autocorrelation of each variable was eliminated. Results showed that the root-soil water relationship varies between the vertical and horizontal directions. Vertically, more roots are distributed in soil with high SWC and fewer roots in soil with low SWC. Namely, root distribution density is positively correlated with SWC in the vertical direction. Horizontally, the root-soil water relationship is, however, more complex. In the canopy-free area of Plot 1, the root-soil water relationship was significant (p < 0.05) and negatively correlated in the middle two depth intervals (20–40 cm and 40–60 cm). In the same two depth intervals in the canopy-free area of Plot 2, the root-soil water relationship was also significant (p < 0.01) but non-monotonic correlated, that is, with the root distribution density increasing, the mean SWC decreased first and then increased. Moreover, we discussed possible mechanisms, e.g., root water uptake, 3D root distribution, preferential flow along roots, and different growing stages, which might lead to the spatially anisotropic relationship between root distribution and SWC at the stand level. This study demonstrates the advantages of GPR in ecohydrology studies at the field scale that is challenging for traditional methods. Results reported here complement existing knowledge about the root-soil water relationship in semi-arid environments and shed new insights on modeling the complex ecohydrological processes in the root zone.


Sign in / Sign up

Export Citation Format

Share Document