scholarly journals PICK-UP RATE OF SUSPENDED SOLIDS AND PARTICULATE COMPONENTS OF NITROGEN AND PHOSPHORUS FROM BED IN RIVER AND LAKE

Author(s):  
Takafumi INAGAKI ◽  
Yasuo NIHEI
2020 ◽  
Vol 12 (12) ◽  
pp. 5026 ◽  
Author(s):  
Jialu Li ◽  
Qiting Zuo

Suspended solids are an important part of lake ecosystems, and their nitrogen and phosphorus contents have a significant effect on water quality. However, information on nitrogen and phosphorus forms in suspended solids remains limited. Therefore, a case study was conducted in Lihu Lake (China), a lake with characteristically high amounts of suspended solids. Nitrogen and phosphorus speciation in suspended solids was analyzed through a sequential extraction method. We also evaluated the sources of various forms of nitrogen and phosphorus and their different effects on eutrophication. The total nitrogen (TN) content was 758.9–3098.1 mg/kg. Moreover, the proportions of various N forms in the suspended solids of the study areas were ranked as follows: Hydrolyzable nitrogen (HN) > residual nitrogen (RN) > exchangeable nitrogen (EN). Total phosphorus (TP) ranged from 294.8 to 1066.4 mg/kg, and 58.6% of this TP was inorganic phosphorus (IP). In turn, calcium (Ca)-bound inorganic phosphorus (Ca-Pi) was the main component of IP. The correlation between various nitrogen and phosphorus forms showed that there were different sources of suspended nitrogen and phosphorus throughout Lihu Lake. Correlation analysis of water quality indices and comparative analysis with surface sediments showed that in Lihu Lake, the dissolved nitrogen and phosphorus contents in water were influenced by sediment through diffusion, while particle phosphorus content in water was influenced by suspended solids through adsorption; however, due to the higher phosphorus contents in suspended solids, we should pay more attention to the impact of suspended solids.


2013 ◽  
Vol 68 (2) ◽  
pp. 400-405 ◽  
Author(s):  
Min Pan ◽  
Tianhu Chen ◽  
Zhenhu Hu ◽  
Xinmin Zhan

Biological nitrogen and phosphorus removal was investigated in an intermittently aerated sequencing batch reactor (IASBR) and a sequencing batch reactor (SBR). The removal efficiencies of ammonium-nitrogen (NH4+-N) were 100% in both reactors in steady operation state. The total nitrogen (TN) removal efficiencies were 90.4% in the IASBR and 79.3% in the SBR, while the total phosphorus (TP) removal efficiencies were 88.8% in the IASBR and 82.3% in the SBR. The efficiencies of simultaneous nitrification and denitrification (SND) were 90.4% in the IASBR and 79.3% in the SBR, indicating that the IASBR was more efficient than the SBR in SND. The sludge in the IASBR had a P release capability of 16.6 mg P/g VSS (volatile suspended solids) but only 7.5 mg P/g VSS in the SBR.


2019 ◽  
Vol 28 (2) ◽  
pp. 257-267
Author(s):  
Marek Kalenik

The model investigations of sewage purification were carried out in a medium sand bed with an assisting hydro-anthracite layer with thickness of 0.10 and 0.20 m. It has been observed that the effectiveness of sewage purification related to basic qualitative parameters (total suspended solids – TSS, BOD5, COD, total nitrogen, total phosphorus) is in accordance with the Polish standards on sewage disposal into grounds and surface water. It has been stated that the medium sand soil bed with the 0.20-meter thick assisting hydro-anthracite layer shows higher effectiveness of sewage purification than the 0.10 m thick assisting layer. This application in the medium sand soil bed increased the removal efficiency regarding TSS by 3.1%, total nitrogen by 29.4%, ammonia nitrogen by 1.2% and total phosphorus by 23.0%, and reduction efficiency regarding BOD5 by 1.5% and COD by 11.3% with relation to the 0.10-meter thick assisting hydro-anthracite layer (all percentages – in average). The investigations confirm that the hydro-anthracite with the granulation of 1.8–2.5 mm can be used to assist in removal of nitrogen and phosphorus compounds from sewages


2001 ◽  
Vol 44 (4) ◽  
pp. 213-219 ◽  
Author(s):  
J. T. de Sousa ◽  
A. C. van Haandel ◽  
A. A.V. Guimarães

This papers describes the behaviour of wetlands as a post-treatment unit for anaerobically treated sewage for the removal of organic matter, suspended solids, nutrients (nitrogen and phosphorus) and faecal coliforms. Raw sewage was treated in a UASB reactor with a retention time of 5 h and the effluent was used in four units of wetlands with coarse sand as the medium and operated with different hydraulic loads. Three of the units had emerging macrophytes (Juncus sp), whereas the fourth one was operated as a control unit without plants. During the 12 months of operation, the organic material removal efficiency (measured as COD) was in the range of 79 to 85%, whereas suspended solids removal varied from 48 to 71%. Faecal coliform removal was very high (99,99%); phosphorus was also efficiently removed (average efficiency of 90% for the lowest hydraulic load), but nitrogen removal was only partial (45 to 70% for ammonia and 47 to 70% for TKN). The experimental results clearly show the technical feasibility of using wetlands for treatment of municipal sewage after a pre-treatment in the UASB reactor.


2003 ◽  
Vol 48 (6) ◽  
pp. 295-299 ◽  
Author(s):  
J.T. de Sousa ◽  
A. van Haandel ◽  
E.P.C. Lima ◽  
A.V.A. Guimaraes

The purpose of this present paper is to verify the performance of three wetland systems operated with effluents from a UASB reactor, with respect nutrient removal (nitrogen and phosphorus), pathogenic organisms and remaining carbonaceous material, monitored over a three-year period. The experiment was carried out and monitored at PROSAB (Programa de Saneamento Básico) in Campina Grande, Para'ba. The removal efficiency of the carbonaceous material expressed in DQO ranged from 70 to 86%, but concerning the total suspended solids, the efficiency ranged from 50 to 71%. The removal efficiency in terms of nitrogen and phosphorus of both vegetated systems was about 65.5 to 86%, respectively, during the first year of operation. Under the operational conditions of the experiment, the removal of phosphorus in a wetland system containing washed sand as the substratum decreased, as its operation period increased. The vegetated wetland has been the most efficient in removing faecal coliforms (roughly 4 log units) as compared to the non-vegetated one (about 3 log units), when both were operated with the same hydraulic load (2.3 cm. per day). Thus, the effluent produced over the three-year period ranged from 800 to 1,800 UFC/100 mL in the analyzed samples.


2001 ◽  
Vol 44 (11-12) ◽  
pp. 55-60 ◽  
Author(s):  
Y. Comeau ◽  
J. Brisson ◽  
J.-P. Réville ◽  
C. Forget ◽  
A. Drizo

Freshwater trout farms need a high and continuous clean water flow to keep fish exposed to a non-toxic ammonium concentration. As a result, the concentration of effluents from these farms are even below standard effluent criteria for municipal wastewater effluent for solids, nitrogen and phosphorus. Nevertheless, the mass of pollutants discharged, originating mostly from excreta and undigested fish food, must be reduced by simple and economical treatment processes. We designed and operated a three-stage system aimed at retaining solids by a 60 μm nylon rotating microscreen followed by treatment with a phosphorus-retaining constructed wetland system. Washwater from the microscreen was pumped to a series of two horizontal flow beds of 100 m3 each (0.6 m deep). Coarse (2 mm) and finer (<2 mm) crushed limestone were used in each bed, respectively, with the first one being planted with reeds (Phragmites australis) and the second one designed to remove even more phosphorus by adsorption and precipitation. Preliminary results indicated that the microscreen captured about 60% of the suspended solids and that greater than 95% of the suspended solids and greater than 80% of the total phosphorus mass loads were retained by the beds. The potential of constructed wetlands as an ecologically attractive and economical method for treating fish farm effluents to reduce solids and phosphorus discharge appears promising.


Author(s):  
Shalini Saxena

Land areas which are wet during part or all of the year are referred as wetlands. Constructed wetlands are manmade systems that mimic the functions of natural wetlands and applied for wastewater treatment. Aim of the present study is to investigate the feasibility of using a Tracheophyte, Phragmiteskarka in constructed wetland for treatment of wastewater in an public park. The daily inlet and outlet wastewater physico-chemical parameters were analysed during the period of two months. The parameters studied were pH, BOD, COD, DO, Total Suspended Solids, Total Dissolved Solids, Nitrogen and Phosphorus. The percentage removal of the parameters were analysed and studied until the percent removal rate gets stabilized. The study showed that the subsurface flow constructed wetlands are best alternative among modern treatments.


2002 ◽  
Vol 45 (12) ◽  
pp. 329-334 ◽  
Author(s):  
R.K. Trivedy ◽  
S.M. Pattanshetty

In the present study treatment of wastewater from a large dairy by using water hyacinth was studied in laboratory experiments. Effects of depth of the system, variations in area coverage, prior settling and of daily renewal of the plants was also studied on the efficacy of hyacinth in treating the dairy waste. Water hyacinth (Eichhornia crassipes) was found to grow exceptionally well in the waste (BOD 840.0 mg/L) and brought down the level of BOD from 840.0 to 121.0 mg/L; COD from 1,160.0 to 164.0 mg/L, total suspended solids from 359.0 mg/L to 245.0 mg/L, TDS from 848.0 mg/L to 352.0 mg/L, total nitrogen from 26.6 mg/L to 8.9 mg/L in 4 days. There was very little reduction, however in calcium, sodium and potassium concentration. Results of different experiments showed that systems with shallow depth were more efficient in removing dissolved solids, suspended solids, BOD, COD, nitrogen and phosphorus. Daily renewal of the plants led to slightly better reduction in suspended and dissolved solids, BOD, COD and nitrogen. Water hyacinth coverage was found to have a direct bearing on the treatment efficiency. Pretreatment (settling) of the waste was also found to be favourable as dissolved oxygen content increased rapidly in the experimental sets with pretreatment. Efficiency of removal of various parameters was also good in these sets. From the study it can be concluded that dairy waste can be effectivily treated by water hyacinth. Consideration of above parameters and incorporating them in design factors can greatly increase the efficiency of the system.


2018 ◽  
Vol 10 (9) ◽  
pp. 3073 ◽  
Author(s):  
Marco Baldi ◽  
Maria Collivignarelli ◽  
Alessandro Abbà ◽  
Ilaria Benigna

The proper recovery of resources such as nitrogen and phosphorus present in the manure from intensive livestock farming is essential in order to allow environmental sustainable zootechny especially in densely populated areas where these activities are historically prevalent. The experiences at full-scale established that the ammonia stripping allows recovery from 35% to 50% of nitrogen depending on the type of substrate treated with anaerobic digestion and on the nitrogen content/form in the digestate. This study focuses on the ammonia stripping on digestate derived from anaerobic digestion of livestock manure and corn silage. Two different full-scale plants are studied including a packed column and an air bubble reactor without filling material with the aim to reduce fouling issues due to the content of suspended solids in digestate. The main results suggest that the use of an air bubble reactor could treat digestate with high concentration of suspended solids. A deeper study based on a two-level factorial experiment highlights that the temperature is an important parameter that influences the ammonia removal yields. Thus, a proper management of available thermal energy is very important.


Sign in / Sign up

Export Citation Format

Share Document