scholarly journals Badania modelowe skuteczności oczyszczania ścieków w piasku średnim z warstwą wspomagającą z hydro-antracytu

2019 ◽  
Vol 28 (2) ◽  
pp. 257-267
Author(s):  
Marek Kalenik

The model investigations of sewage purification were carried out in a medium sand bed with an assisting hydro-anthracite layer with thickness of 0.10 and 0.20 m. It has been observed that the effectiveness of sewage purification related to basic qualitative parameters (total suspended solids – TSS, BOD5, COD, total nitrogen, total phosphorus) is in accordance with the Polish standards on sewage disposal into grounds and surface water. It has been stated that the medium sand soil bed with the 0.20-meter thick assisting hydro-anthracite layer shows higher effectiveness of sewage purification than the 0.10 m thick assisting layer. This application in the medium sand soil bed increased the removal efficiency regarding TSS by 3.1%, total nitrogen by 29.4%, ammonia nitrogen by 1.2% and total phosphorus by 23.0%, and reduction efficiency regarding BOD5 by 1.5% and COD by 11.3% with relation to the 0.10-meter thick assisting hydro-anthracite layer (all percentages – in average). The investigations confirm that the hydro-anthracite with the granulation of 1.8–2.5 mm can be used to assist in removal of nitrogen and phosphorus compounds from sewages

2017 ◽  
Vol 76 (2) ◽  
pp. 396-412 ◽  
Author(s):  
Su-jin Lu ◽  
Jian-huan Si ◽  
Chuan-ying Hou ◽  
Yu-si Li ◽  
Meng-meng Wang ◽  
...  

To provide a theoretical basis for alpine source lake protection, ten samples were taken from each lake annually from 2012 to 2015. Each year, the various species of nitrogen and phosphorus nutrients were measured. The average contents of nitrate nitrogen, ammonia nitrogen, nitrite nitrogen, total phosphorus, and total nitrogen in the four lakes are 0.195–0.0 mg/L, 0.038–0.143 mg/L, 0.004–0.168 mg/L, 0.006–0.740 mg/L, and 0.050–0.547 mg/L, respectively. The total phosphorus contents in Eling Lake, Longbao Lake and Sea Star were higher than Class I water quality standards, and the total nitrogen contents in Eling Lake, Sea Star and Zhaling Lake were higher than Class I water quality standards as well. The concentration contour maps of the nitrate nitrogen, ammonia nitrogen, nitrite nitrogen, total phosphorus and total nitrogen showed that the indicators of the four lakes in the east, the west, and the center of the lake did not have the same trend. From 2012 to 2015, each of the measured nutrients showed a rising trend year by year. The four lakes are polluted by both endogenous and exogenous pollution, and it is necessary to limit the exogenous pollution and protect the alpine lakes immediately.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1467 ◽  
Author(s):  
Tao ◽  
Wang ◽  
Guan ◽  
Xu ◽  
Chen ◽  
...  

Agricultural drainage plays an effective role in preventing waterlogging and salinity disasters and also is the main transport pathway for agricultural non-point source pollutants into rivers and lakes. Hence, the water quality of agricultural drainage should be a point of focus. In this paper, nitrogen and phosphorus loss under improved subsurface drainage with different filter materials (gravel, layered sand-gravel, mixed sand-gravel, straw) were studied by a three-year field experiment (2016–2018) compared with the conventional subsurface drainage. The pH values, total nitrogen, ammonia nitrogen, nitrate nitrogen, total phosphorus and soluble reactive phosphate were considered. The results showed that the nitrogen and phosphorus concentrations of drain outflow under improved subsurface drainage with gravel filter were larger than that with layered sand-gravel filter and mixed sand-gravel filter. The improved subsurface drainages with layered sand-gravel filter and mixed sand-gravel filter had an effect on reducing the ammonia nitrogen, total phosphorus and soluble reactive phosphate concentrations of the outflow. Meanwhile, the characteristics of nitrogen and phosphorus loss under the improved subsurface drainage with straw filter were different from that with layered sand-gravel filter and mixed sand-gravel filter. For the improved subsurface drainage with layered sand-gravel filter outflow, the ammonia nitrogen, total phosphorus, and soluble reactive phosphate concentrations were about 13%–78%, 38%–63%, 40%–68% less, and total nitrogen, nitrate nitrogen concentrations were 24%–80%,18%–96% more than that under conventional subsurface drainage. Meanwhile, for the improved subsurface drainage with straw filter outflow, compared with conventional subsurface drainage outflow, the percentage changes of the total nitrogen, nitrate nitrogen, ammonia nitrogen, total phosphorus and the soluble reactive phosphate concentrations were about −76%–62%, −77%–78%, −152%–−274%, −103%–−400% and −221%–−291%, respectively. Additionally, in the outflow of all subsurface drainage patterns, there were much higher total nitrogen and nitrate nitrogen concentrations which should be focused on and the agricultural water management should be adopted.


2011 ◽  
Vol 250-253 ◽  
pp. 3392-3396
Author(s):  
Yu Jia Song ◽  
Hui Qing Liu

The discharge of urban sewage and agricultural non-point source pollutants is the main reason causing eutrophication in gullies in most cities of northern China. Based on a careful analysis on the ecological structure and ecological characteristics of a gully, this article preliminarily studies the interception and degradation mechanisms of nitrogen pollutants by the gully. Meanwhile, to take gullies in Changchun as the object of the study, this article carries out an experiment on the interception effect of nitrogen pollutants by gullies. This experiment respectively establishes a control section in the upper and lower reaches of a gully, and takes water samples four times in each section from May to August to determine total nitrogen, total phosphorus, nitrate nitrogen, ammonia nitrogen and salinity. The result shows: the gully plays some role in the interception of pollutants; total phosphorus accounts for the largest interception in pollutants in the experimented gully section, with the relative interception rate of 27.46%, followed by ammonia nitrogen, with the interception rate of 21.80%, which is the result of the combined effects of aquatic plants, microorganisms and sediment in the gully.


2018 ◽  
Vol 52 (4) ◽  
pp. 19-31
Author(s):  
Christopher Buzzelli ◽  
Zhiqiang Chen ◽  
Peter Doering ◽  
Amanda Kahn

Abstract Coastal water bodies are impacted by watershed alterations, increased population density, modifications to inlets and shorelines, climatic periodicity, and increases in external material loads. Estuaries such as Lake Worth Lagoon (LWL) in south Florida possess all these attributes. The LWL watershed extends from the southeastern portion of Lake Okeechobee through Palm Beach County, where it meets the lagoon. Palm Beach County Department of Environmental Resources Management recognizes the social and ecological importance of the ~36 km lagoon and aims to maintain suitable water and habitat quality for all stakeholders. Recent declines and shifts of seagrass distribution along the lagoon prompted a step toward better understanding the water quality patterns of the system. In support of these efforts, this study assessed bathymetry, inflow, flushing, and water quality attributes (chlorophyll a, salinity, total nitrogen, total phosphorus, total suspended solids, turbidity) using data collected along a series of 14 midlagoon stations from 2007 to 2015. Salinity in the North Segment was higher and less variable because of proximity to Palm Beach Inlet. Although concentrations of chlorophyll a, total nitrogen, and total phosphorus correlated with freshwater inflow, turbidity and total suspended solids were not. Fast flushing of the lagoon on a scale of days likely precludes water quality issues common to many estuaries with higher resident times. However, the combination of landscape-scale water management, a shoreline that is almost 70% modified by hard structures, and changes in essential nearshore habitats, introduces new levels of uncertainty to both the understanding and management of LWL. From this study, increased knowledge of relationships among water quality parameters and their spatial and temporal variability in LWL provides points of reference from which targeted studies can be developed to explore links between environmental parameters and responses of key organisms in this unique system.


Author(s):  
Mengjing Guo ◽  
Tiegang Zhang ◽  
Jing Li ◽  
Zhanbin Li ◽  
Guoce Xu ◽  
...  

Nitrogen and phosphorus are essential for plant growth and are the primary limiting nutrient elements. The loss of nitrogen and phosphorus in agricultural systems can cause the eutrophication of natural water bodies. In this paper, a field simulated rainfall experiment was conducted in a typical small watershed of the Danjiang River to study the nutrient loss process of nitrogen and phosphorus in slope croplands subjected to different crops and tillage measures. The characteristics of the runoff process and nutrient migration of different slope treatments were studied, which were the bare-land (BL, as the control), peanut monoculture (PL), corn monoculture (CL), bare land (upper slope) mixed with peanut monoculture (lower slope) (BP), corn and peanut intercropping (TCP), corn and soybean intercropping (TCS), downslope ridge cultivation (BS) slope, and straw-mulched (SC), respectively. The results showed that the runoff of CL, SC, TCS, BS, BP, PL and TCP slope types were 93%, 75%, 51%, 39%, 28%, 12%, and 6% of the those of the bare land, respectively. The total nitrogen concentration in runoff on different slope types decreased in the order of BP > PL > BS > SC > TCP > BL > CL > TCS. The BL was characterized with the highest NRL-TN (the loss of total nitrogen per unit area), with the value of 1.188 kg/hm2, while those of the TCP is the smallest with the value of 0.073 kg/hm2. The total phosphorus concentration in runoff decreasd in the order of BS > BP > PL > BL > TCP > SC > CL > TCS. The PRL-TP (the loss of total phosphorus per unit area) of BL is the largest (0.016 kg/hm2), while those of TCP is the smallest (0.001 kg/hm2). These indicate that the loss of nitrogen is much higer than that of phosphorus. The loss of nitrogen in runoff is dominated by nitrate nitrogen, which accounts for 54.4%–78.9% of TN. Slope croplands in the water source area should adopt the tillage measures of TCP and PL.These measures can reduce 85% of the runoff of nitrogen and phosphorus compared to the bare land. The results may assist in agricultural non-point source pollution control and help promote improved management of the water environment in the Danjiang River’s water source area.


2018 ◽  
Vol 44 ◽  
pp. 00149 ◽  
Author(s):  
Monika Puchlik

The purpose of the work was to determine the effectiveness of wastewater treatment from the fruit and vegetable industry in constructed wetlands supported by a bio-preparation. An increase in the efficiency of organic substance purification expressed as BOD5 and COD by 8% in deposit with the addition of bio-preparation in relation to the control bed (without the addition of bio-preparation), was found. The efficiency of the total suspension, total nitrogen and total phosphorus increased respectively by 19.5%, 10%, and 27% in relation to the bed without addition of bio-preparation. Constructed wetlands treatment plant ensures high removal of organic compounds expressed as BOD5 and COD, as well as guarantees reduction in the concentration of nitrogen and phosphorus compounds.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1445 ◽  
Author(s):  
Michał Marzec ◽  
Krzysztof Jóźwiakowski ◽  
Anna Dębska ◽  
Magdalena Gizińska-Górna ◽  
Aneta Pytka-Woszczyło ◽  
...  

In this paper, the pollutant removal efficiency and the reliability of a vertical and horizontal flow hybrid constructed wetland (CW) planted with common reed, manna grass, and Virginia mallow were analyzed. The wastewater treatment plant, located in south-eastern Poland, treated domestic sewage at an average flow rate of 2.5 m3/d. The tests were carried out during five years of its operation (2014–2018). The following parameters were measured: biochemical oxygen demand (BOD5), chemical oxygen demand (COD), total suspended solids, total nitrogen, and total phosphorus. The results showed that more than 95% of BOD5, COD, and total phosphorus was removed in the tested CW system. The average effectiveness of removal of total suspended solids and total nitrogen exceeded 86%. A reliability analysis performed using the Weibull probability model showed that the removal reliability in the tested CW was very high for BOD5, COD, total suspended solids, and total phosphorus (100%). The probability that the total nitrogen concentration in the treated effluents would reach the limit value (30 mg/L) established for effluents discharged from a treatment plant of less than 2000 PE (population equivalent) to standing waters was 94%. The values of all the pollution indicators in wastewater discharged to the receiver were significantly lower than the limit values required in Poland. The investigated hybrid CW system with common reed, manna grass, and Virginia mallow guaranteed stable low values of BOD5, COD, total suspended solids, and total phosphorus in the treated wastewater, which meant it was highly likely to be positively evaluated in case of an inspection.


2001 ◽  
Vol 44 (7) ◽  
pp. 151-156 ◽  
Author(s):  
S. Umemoto ◽  
Y. Komai ◽  
T. Inoue

Nutrients and other pollutant runoffs from streams in artificial forest areas in central Hyogo Prefecture in southwest Japan have been investigated to estimate pollutant loads since 1995. The orthophosphate and ammonium nitrogen contents were usually low and constant during the investigation. When the flowrates of the streams were normal, the concentrations of suspended solids, CODMn, TOC and total phosphorus were very low, and did not change much. However, when stream flows were increased by rainstorms or other precipitation, higher concentrations of these parameters occurred. Otherwise, the average concentrations of nitrate nitrogen and total nitrogen were 0.26 mg/l and 0.31 mg/l, respectively, and they were often increased by precipitation events. They changed at the same time because the ratio of nitrate nitrogen per total nitrogen was high, about 80%. The fluctuation of concentrations of total phosphorus was similar to SS concentrations, which suggested that phosphorus was discharged in the types of suspended solids from forest areas. The specific loads of the nutrients and some other pollutants did not differ among the three watersheds investigated. However, the difference among them between fine days and rainy days was fairly large. It was presumed that pollutant runoff from forest areas is strongly dependent on precipitation events.


2006 ◽  
Vol 63 (5) ◽  
pp. 433-438 ◽  
Author(s):  
Gustavo Gonzaga Henry-Silva ◽  
Antonio Fernando Monteiro Camargo

The effluents from fish farming can increase the quantity of suspended solids and promote the enrichment of nitrogen and phosphorus in aquatic ecosystems. In this context, the aim of this work was to evaluate the efficiency of three species of floating aquatic macrophytes (Eichhornia crassipes, Pistia stratiotes and Salvinia molesta) to treat effluents from Nile tilapia culture ponds. The effluent originated from a 1,000-m² pond stocked with 2,000 male Nile tilapia Oreochromis niloticus. The treatment systems consisted of 12 experimental tanks, three tanks for each macrophyte species, and three control tanks (without plants). Water samples were collected from the: (i) fish pond source water, (ii) effluent from fish pond and (iii) effluents from the treatment tanks. The following water variables were evaluated: turbidity, total and dissolved nitrogen, ammoniacal-N, nitrate-N, nitrite-N, total phosphorus and dissolved phosphorus. E. crassipes and P. stratiotes were more efficient in total phosphorus removal (82.0% and 83.3%, respectively) and total nitrogen removal (46.1% and 43.9%, respectively) than the S. molesta (72.1% total phosphorus and 42.7% total nitrogen) and the control (50.3% total phosphorus and 22.8% total nitrogen), indicating that the treated effluents may be reused in the aquaculture activity.


2012 ◽  
Vol 518-523 ◽  
pp. 2895-2899 ◽  
Author(s):  
Ju Hong Zhan ◽  
Sha Deng ◽  
Zhao Xin Li ◽  
Yu Luo ◽  
Ting Ting Zhao ◽  
...  

Sediment dredging is currently the most commonly selected option for getting rid of contaminated sediments. In this study, the effects of estuary dredging on removing nitrogen and phosphorus were investigated by comparing the different vertical nutrient content between the dredged and un-dredged areas in Dianchi Lake. The results showed that the contents of total nitrogen and total phosphorus in the un-dredged areas were relatively higher than that in dredged areas. Besides, the contents of bio-available nitrogen and phosphorus represented the similar results, only a few dredged spots showed a higher potential releasing capacity. Therefore, with the reduction of internal nutrient loading, it indicated that sediment dredging might be an effective and reliable way to improve such eutrophic lakes.


Sign in / Sign up

Export Citation Format

Share Document