scholarly journals Nonlinear Wave Transformation and Air Pressure Variation of Air-Chamber Structure

1992 ◽  
Vol 8 ◽  
pp. 59-64
Author(s):  
Koichiro IWATA ◽  
Do-Sarn KIM
Author(s):  
Sergey Kuznetsov ◽  
Sergey Kuznetsov ◽  
Yana Saprykina ◽  
Yana Saprykina ◽  
Boris Divinskiy ◽  
...  

On the base of experimental data it was revealed that type of wave breaking depends on wave asymmetry against the vertical axis at wave breaking point. The asymmetry of waves is defined by spectral structure of waves: by the ratio between amplitudes of first and second nonlinear harmonics and by phase shift between them. The relative position of nonlinear harmonics is defined by a stage of nonlinear wave transformation and the direction of energy transfer between the first and second harmonics. The value of amplitude of the second nonlinear harmonic in comparing with first harmonic is significantly more in waves, breaking by spilling type, than in waves breaking by plunging type. The waves, breaking by plunging type, have the crest of second harmonic shifted forward to one of the first harmonic, so the waves have "saw-tooth" shape asymmetrical to vertical axis. In the waves, breaking by spilling type, the crests of harmonic coincides and these waves are symmetric against the vertical axis. It was found that limit height of breaking waves in empirical criteria depends on type of wave breaking, spectral peak period and a relation between wave energy of main and second nonlinear wave harmonics. It also depends on surf similarity parameter defining conditions of nonlinear wave transformations above inclined bottom.


Author(s):  
Zhiying He ◽  
Chunjun Chen ◽  
Dongwei Wang ◽  
Chao Deng ◽  
Jia Hu ◽  
...  

Based on the characteristics that the tunnel pressure wave has a fixed-morphologic form when the same train passes through the same tunnel, an applicational approach based on the iterative learning control (ILC) is developed, aiming at overcoming the drawbacks of the traditional strategy for controlling the air pressure variation inside a high-speed train carriage. To achieve the goal, the control system is mathematically modelled. Then, the problem is formulated. The task of suppressing the influence of the tunnel pressure wave on the air pressure inside the carriages is shifted as an ILC problem of tracking the comfort index with varying trial length. The algorithm of refreshing the control signal from trial to trial is determined and the process of ILC control is designed. Next, the convergence of the newly-developed applicational ILC algorithm is discussed and the algorithm is simulated by the simulation signal and field-test signal. Results show that the applicational ILC algorithm be more adaptable in handling the control of the air pressure inside carriage under the excitation of varying-amplitude, varying-scale and varying-initial-states tunnel pressure wave. Meanwhile, the matching with tunnel pressure wave makes the applicational ILC algorithm will take both the riding comfort and fresh air into consideration, which upgrades the performances when the high-speed train passing through long tunnels.


2021 ◽  
Author(s):  
Tomoki Ikoma ◽  
Shota Hirai ◽  
Yasuhiro Aida ◽  
Koichi Masuda

Abstract Wave energy converters (WECs) have been extensively researched. The behaviour of the oscillating water column (OWC) in OWC WECs is extremely complex due to the interaction of waves, air, and turbines. Several problems must be overcome before such WECs can be put to practical use. One problem is that the effect of the difference in scale between a small-scale experimental model and a full-scale model is unclear. In this study, several OWC models with different scales and geometries were used in forced oscillation tests. The wave tank was 7.0 m wide, 24.0 m long, and 1.0 m deep. In the static water experiment, we measured the air pressure and water surface fluctuations in an air chamber. For the experiments, models with a box shape with an open bottom, a manifold shape with an open bottom, and a box shape with a front opening, respectively, were fabricated. Furthermore, 1/1, 1/2, and 1/4 scale models were fabricated for each shape to investigate the effects of scale and shape on the air chamber characteristics. Numerical calculations were carried out by applying linear potential theory and the results were compared with the experimental values. The results confirmed that the air chamber shape and scale affect the air pressure fluctuation and water surface fluctuation inside the OWC system.


2016 ◽  
Vol 23 (s1) ◽  
pp. 44-51 ◽  
Author(s):  
Qian-lu Xiao ◽  
Chun-hui Li ◽  
Xiao-yan Fu ◽  
Mei-ju Wang

Abstract The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be considered in the nearshore wave simulations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Toshio Takayama ◽  
Yusuke Sumi

AbstractRecently pneumatic-driven soft robots have been widely developed. Usually, the operating principle of this robot is the inflation and deflation of elastic inflatable chambers by air pressure. Some soft robots need rapid and periodic inflation and deflation of their air chambers to generate continuous motion such as progress motion or rotational motion. However, if the soft robot needs to operate far from the air pressure source, long air tubes are required to supply air pressure to its air chambers. As a result, there is a large delay in supplying air pressure to the air chamber, and the motion of the robot slows down. In this paper, we propose a compact device that changes its airflow passages by self-excited motion generated by a supply of continuous airflow. The diameter and the length of the device are 20 and 50 mm, respectively, and can be driven in a small pipe. Our proposed in-pipe mobile robot is connected to the device and can move in a small pipe by dragging the device into it. To apply the device widely to other soft robots, we also discuss a method of adjusting the output pressure and motion frequency.


Author(s):  
Tomoki Ikoma ◽  
Koichi Masuda ◽  
Hikaru Omori ◽  
Hiroyuki Osawa ◽  
Hisaaki Maeda

This paper describes a method in order to improve the performance of the primary conversion of wave power take-off. A corresponding wave energy convertor (WEC) is an oscillating water column (OWC) type. The method of the improvement has been proposed and its usefulness has been confirmed in past researches. In the method, projecting walls were attached onto front of inlet-outlet of OWC. The prediction method of hydrodynamic behaviors for the projecting walls installed OWC type WEC is explained in the paper. The boundary element method with the Green’s function is applied and influence of air pressure and free surface within every an air-chamber was directly taken into consideration in the prediction method based on a linear potential theory. Validity of the prediction method was proved comparing with results of model experiments. Series calculations are performed with the prediction method. Behaviors of air pressure, water elevation and the efficiency of primary conversion of wave power are investigated. From the calculations, length of the projecting walls was shown to affect the efficiency of primary conversion. It was available to equip the projecting walls for the improvement in oblique waves to beam sea condition as well as head sea condition. As well as only the projecting walls, application and effects of the end walls with the slit were investigated in the paper. The end walls were very useful to improve the efficiency.


2014 ◽  
Vol 2014 (1) ◽  
pp. 400-407
Author(s):  
Doorce S. Batubara ◽  
Donald D. Adrian ◽  
Martin S. Miles ◽  
Ronald F. Malone

ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are one of the contaminants of concern in coastal marsh environments which are subject to crude oil spills. A laboratory scale mesocosm can be used to complement field study of PAH degradation in coastal marshes. Coastal marsh wetland features, such as its soil, tidal cycles, and flushing, that may play roles in PAH degradation can be simulated in a laboratory mesocosm. The laboratory mesocosm tank is made of acrylic as the main construction material with an air chamber inside the tank which functions as a pneumatic system and tidal water storage compartment. Two trays filled with contaminated marsh wetland soil are situated at two different levels: the lower one is constantly submerged while the higher one is intermittently drained. When the air pressure inside the air chamber is high, the water will flow out from the air chamber to the tank to create high tide. When the air pressure inside the air chamber is low, the water will flow back from the tank to the air chamber to create low tide inside the tank. The tidal water sits in the air chamber until the next high air pressure. The cycles of air pressure inside the tank are controlled by an electrical air pump connected to a timer. The experimental setup can consist of several replicates with an air chamber inside each replicate is controlled by a master pneumatic tank. The model PAH contaminant used in the experiment was phenanthrene, a three-benzene-ring PAH, which was spiked to the wetland soil. The experimental results show that the phenanthrene degradation in the intertidal wetland soil is higher than that of in the subtidal wetland soil presumably due to the availability of oxygen in the intertidal wetland soil. The laboratory mesocosm developed in this study can be used as a tool for examining PAH degradation and other non-volatile organic contaminants.


Sign in / Sign up

Export Citation Format

Share Document