Intraspecific variations in morphology of swamp barb (Puntius brevis)

2021 ◽  
Vol 13 (Aquaculture) ◽  
pp. 44-51
Author(s):  
Ngoc Son Le ◽  
Thuy Yen Duong

Understanding inter-population variation and sexual differences in morphology is a fundamental part of taxonomic and biological research. External morphology of swamp barb (Puntius brevis) was compared between sexes and among three populations in the Mekong Delta, including O Mon-Can Tho (n=86), U Minh Thuong-Kien Giang (n=49) and U Minh Ha-Ca Mau (n=77). The results illustrate that color and countable parameters are similar in all populations. Nonetheless, 9 out of 20 morphometric indices are significantly different among three populations (P<0.05), where 6 indices are more important criteria to distinguish among swamp barb populations. Furthermore, the sexual dimorphism of this species is indicated in 16/20 morphometric indices consisting of 5 indices relating egg-carrying characteristics. In particular, the females have higher values of indices relating to abdomen and head parts while most of fin length indices are larger in males than in females. In sum, intraspecific variation in morphometrics of swamp barb is mainly due to sexual dimorphism rather than populations.

Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 884
Author(s):  
Shufen Chen ◽  
Wataru Ishizuka ◽  
Toshihiko Hara ◽  
Susumu Goto

Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.


2018 ◽  
Vol 5 (5) ◽  
pp. 172470 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Adam J. Munn ◽  
Phillip G. Byrne

Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse ( Mus musculus ) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.


Zootaxa ◽  
2018 ◽  
Vol 4378 (3) ◽  
pp. 442 ◽  
Author(s):  
NARESH M. MESHRAM ◽  
STUTI RAI ◽  
N. N. RAJGOPAL ◽  
N. RAMYA

Two new species of leafhoppers, Durgades sineprocessus sp. nov. (From Himachal Pradesh: Kalpa) and Japanagallia dolabra sp. nov. (From Sikkim: Lachung) from India, are described and illustrated. Photographic illustrations of Durgades aviana Viraktamath and a detailed note on intraspecific variation in male genitalia of Austroagallia sinuata (Mulsant & Rey) are also provided. Material is deposited in the National Pusa Collection, Division of Entomology, Indian Council of Agricultural Research-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India. 


2017 ◽  
Vol 278 ◽  
pp. 407.e1-407.e7 ◽  
Author(s):  
Douglas H. Ubelaker ◽  
Cassandra M. DeGaglia

2018 ◽  
Vol 285 (1890) ◽  
pp. 20181717 ◽  
Author(s):  
Denon Start ◽  
Stephen De Lisle

Intraspecific variation can have important consequences for the structure and function of ecological communities, and serves to link community ecology to evolutionary processes. Differences between the sexes are an overwhelmingly common form of intraspecific variation, but its community-level consequences have never been experimentally investigated. Here, we manipulate the sex ratio of a sexually dimorphic predacious newt in aquatic mesocosms, then track their impact on prey communities. Female and male newts preferentially forage in the benthic and pelagic zones, respectively, causing corresponding reductions in prey abundances in those habitats. Sex ratio differences also explained a large proportion (33%) of differences in the composition of entire pond communities. Ultimately, we demonstrate the impact of known patterns of sexual dimorphism in a predator on its prey, uncovering overlooked links between evolutionary adaptation and the structure of contemporary communities. Given the extreme prevalence of sexual dimorphism, we argue that the independent evolution of the sexes will often have important consequences for ecological communities.


2003 ◽  
Vol 117 (2) ◽  
pp. 236 ◽  
Author(s):  
John A. Virgl ◽  
Shane P. Mahoney ◽  
Kim Mawhinney

It is well recognized that differences in environmental selection pressures among populations can generate phenotypic divergence in a suite of morphological characteristics and associated life history traits. Previous analysis of mitochondrial DNA and body size have suggested that Black Bears (Ursus americanus) inhabiting the island of Newfoundland represent a different subspecies or ecotype from mainland populations. Assuming that body size covaries positively with skull size, we predicted that skull size would be greater for bears on the island than the mainland, and the distribution of size-related shape components in multivariate space should show a distinct separation between Newfoundland and mainland populations. Measurements of 1080 specimens from Newfoundland, Alberta, New York, and Quebec did not provide unequivocal support for our prediction that skull size in Newfoundland bears would be larger than bears from the mainland populations. After removing ontogenetic effects of skull size, between-population variation in skull shape was greater in females than males, and the analysis significantly separated Newfoundland bears from mainland populations. Explanations for this pattern are numerous, but currently remain hypothetical. Limited covariation between skull size and body size suggests that genetic traits regulating the size of Black Bear skulls are more heritable (i.e., less influenced by environmental selection pressures) than characteristics affecting body size. We hypothesize that if gape size does not limit prey size in solitary terrestrial carnivores, large degrees of among-population variation in body size should be coupled with little covariation in skull size. In general, sexual dimorphism in skull size and shape was marginal for the phenotypic characters measured in our study. We believe that sexual dimorphism in skull size in Black Bears is primarily driven by intrasexual selection in males for increased gape size display, while similarity in skull shape between sexes is associated with the constraints of a temporally-selective, but similar diet.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 485 ◽  
Author(s):  
Theo Tasoulis ◽  
Anjana Silva ◽  
Punnam Chander Veerati ◽  
Mark Baker ◽  
Wayne C. Hodgson ◽  
...  

Intra-specific venom variation has the potential to provide important insights into the evolution of snake venom, but remains a relatively neglected aspect of snake venom studies. We investigated the venom from 13 individual coastal taipans Oxyuranus scutellatus from four localities on the north-east coast of Australia, spanning a distance of 2000 km. The intra-specific variation in taipan venom was considerably less than the inter-specific variation between it and the other Australian elapids to which it was compared. The electrophoretic venom profile of O. scutellatus was visually different to six other genera of Australian elapids, but not to its congener inland taipan O. microlepidotus. There was minimal geographical variation in taipan venom, as the intra-population variation exceeded the inter-population variation for enzymatic activity, procoagulant activity, and the abundance of neurotoxins. The pre-synaptic neurotoxin (taipoxin) was more abundant than the post-synaptic neurotoxins (3FTx), with a median of 11.0% (interquartile range (IQR): 9.7% to 18.3%; range: 6.7% to 23.6%) vs. a median of 3.4% (IQR: 0.4% to 6.7%; range: 0% to 8.1%). Three taipan individuals almost completely lacked post-synaptic neurotoxins, which was not associated with geography and occurred within two populations. We found no evidence of sexual dimorphism in taipan venom. Our study provides a basis for evaluating the significance of intra-specific venom variation within a phylogenetic context by comparing it to the inter-specific and inter-generic variation. The considerable intra-population variation we observed supports the use of several unpooled individuals from each population when making inter-specific comparisons.


Sign in / Sign up

Export Citation Format

Share Document