scholarly journals Esterification of Crude Palm Oil Using H2SO4 and Transesterification Using CaO Catalyst Derived from Anadara granosa

2017 ◽  
Vol 17 (2) ◽  
pp. 309 ◽  
Author(s):  
Nurhayati Nurhayati ◽  
Sofia Anita ◽  
Tengku Ariful Amri ◽  
Amilia Linggawati

In this study biodiesel was produced from crude palm oil through two-step processes, namely esterification reactions using homogeneous H2SO4 catalyst and transesterification using the heterogeneous base CaO catalyst derived from Anadara granosa shell. Several parameters affecting to the yields of biodiesel were investigated including the amount of the catalysts, the molar ratios of oil to methanol, reaction times and reaction temperatures. The CaO catalyst was prepared by calcining the A. granosa shells at the temperatures of 800 and 900 °C for 10 h. The as-synthesized biodiesel was analyzed using GC and its characteristics were determined and the results were compared to Standard National for Biodiesel (SNI 04-7183-2006). The optimum condition for the esterification process (step 1) was as follows: reaction temperature of 65 °C, reaction time of 3 h and mol ratio of oil to methanol 1:24. For the transesterification (step 2) the optimum conditions were attained using the catalyst weight 3%, reaction temperature of 60 °C, reaction time of 3 h, mole ratio of oil/methanol 1:6 and the catalyst calcination time of 10 h with the conversion of 87.17%. This biodiesel yield by the two-step processes was higher (2.7%) than that using only one-step process (transesterification).

2017 ◽  
Vol 41 (2) ◽  
pp. 88-92
Author(s):  
Shenggui Liu ◽  
Rongkai Pan ◽  
Wenyi Su ◽  
Guobi Li ◽  
Chunlin Ni

2,6-Bis[1-(pyridin-2-yl)-1H-benzo[d]-imidazol-2-yl]pyridine (bpbp), which has been synthesised by intramolecular thermocyclisation of N2,N6-bis[2-(pyridin-2-ylamino)phenyl]pyridine-2,6-dicarboxamide, reacts with sodium pyridine-2,6-dicarboxylate (pydic) and RuCl3 to give [Ru(bpbp)(pydic)] which can catalyse the oxidation of (1H-benzo[d]imidazol-2-yl)methanol to 1H-benzo[d]imidazole-2-carbaldehyde by H2O2. The optimal reaction conditions were: molar ratios of catalyst to substrate to H2O2 set at 1: 1000: 3000; reaction temperature 50 °C; reaction time 5 h. The yield of (1H-benzo[d]imidazol-2-yl) methanol was 70%.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoling Yao ◽  
Chungui Du ◽  
Yating Hua ◽  
Jingjing Zhang ◽  
Rui Peng ◽  
...  

In recent years, bamboo has been widely used for building materials and household goods. However, bamboo is flammable, so a flame-retardant treatment for bamboo is urgently needed. In this work, nano MgAl-layered double hydroxide (MgAl-LDH) coated on bamboo, which was called MgAl-LB, was synthesized by an in situ one-step method. To determine the optimal in situ time, the effects of different reaction times on LDH growth on the bamboo surface and the flame retardancy of the MgAl-LBs were investigated. The SEM observations show that LDH growth on the surface of bamboo was basically saturated when the in situ reaction time was 24 h. Abrasion experiments show that MgAl-LDH coating has good abrasion resistance. The fire performance of the MgAl-LBs was evaluated by cone calorimeter tests, which indicated that the THR and TSP of the MgAl-LBs were significantly lower than those of untreated bamboo. Taking into account the energy consumption problem, determining the reaction time of 24 h is the optimal reaction time. Compared with untreated bamboo, the THR and TSP of MgAl-LB prepared at 24 h decreased by 33.3% and 88.9%, respectively.


2014 ◽  
Vol 917 ◽  
pp. 87-95 ◽  
Author(s):  
Suliana Abu Bakar ◽  
Suzana Yusup ◽  
Murni Melati Ahmad ◽  
Armando T. Quitain ◽  
Mitsuru Sasaki ◽  
...  

The production of biodiesel from crude palm oil (CPO) using microwave technique is investigated and has been compared with conventional heating. Two-step biodiesel production process is applied to maximize the highest biodiesel yield in short reaction time using microwave method. Sulfuric acid (H2SO4) as acid catalysts is used in pre-treatment of feedstock by esterification process followed by potassium hydroxide (KOH) as base catalyst for transesterification process with low methanol to oil ratio. The main purpose of the pre-treatment process is to reduce the free fatty acids (FFA) content of CPO from higher value of FFA content (>6.8%) to a minimum level for biodiesel production (<1%). Esterification and transesterification is carried out in fully instrumented and controlled microwave reactor system to get higher yield in shorter time. This two-step esterification and transesterification process showed that the maximum conversion of palm biodiesel obtained is 95.1% with the process conditions of methanol-to-oil molar ratio of 6:1, reaction temperature 65oC, reaction time 15min, and 2% (wt/wt) KOH amount using microwave method compared to conventional heating where the palm oil methyl ester (POME) yield obtained is 81% at the same conditions. The result showed that, the biodiesel production using microwave technique proved to be a fast and easy route to get high yields of biodiesel.


2020 ◽  
Vol 834 ◽  
pp. 16-23
Author(s):  
Pongchanun Luangpaiboon ◽  
Pasura Aungkulanon

Biodiesel was synthesized from direct transesterification of palm oil reacted with methanol in the presence of a suitable catalyst. There is a sequence of three consecutive reversible reactions for the transesterification process. These process parameters were optimized via the hybrid optimization approach of a conventional response surface method and artificial intelligence mechanisms from Sine Cosine and Thermal Exchange Optimization metaheuristics. The influential parameters and their combined interaction effects on the transesterification efficiency were established through a factorial designed experiments. In this study, the influential parameters being optimized to obtain the maximum yield of biodiesel were reaction temperature of 60–150°C, reaction time of 1–6 hours, methanol to oil molar ratio of 6:1–12:1 mol/mol and weight of catalyst of 1–10wt. %. On the first phase, the analysis of variance (ANOVA) revealed the reaction time as the most influential parameter on biodiesel production. Based on the experimental results from the hybrid algorithm via the SCO, it was concluded that the optimal biodiesel yield for the transesterification of palm oil were found to be 100°C for reaction temperature, 4 hours for reaction time, 10:1 wt/wt of ratio methanol to oil and 8% of weight of catalyst with 92.15% and 90.97% of biodiesel yield for expected and experimental values, respectively.


2007 ◽  
Vol 22 (6) ◽  
pp. 1472-1478 ◽  
Author(s):  
Youjin Zhang ◽  
Tao Cheng ◽  
Qixiu Hu ◽  
Zhiyong Fang ◽  
Kaidong Han

Novel slight yellow CeO2single/multiwall hollow microspheres were synthesized by the hydrothermal method without any surfactant and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and x-ray photoelectron spectra (XPS). The results showed that the products were CeO2single/multiwall hollow microspheres, the shells of which were composed of CeO2nanoparticles with a mean size of 70 nm. The effect of the preparation conditions, the reaction temperature, the reaction time, and the molar ratios of urea to Ce(NO3)3·6H2O on the morphology of the products, was investigated. The optimal preparation conditions are determined as follows: the reaction temperature of 230 °C, the reaction time of 6 to 10 h, and the molar ratios of urea to Ce(NO3)3·6H2O of 3:1 to 6:1. The formation mechanism of CeO2single/multiwall hollow microspheres was proposed. The ultraviolet-visible (UV-VIS) diffuse reflectance spectra of the samples were measured. The results showed that the absorption edges of the samples were red-shifted compared with that of bulk CeO2, and that the red-shift of the absorption edges and the yellow of the samples enhanced with increasing the yield of CeO2single/multiwall hollow microspheres. The catalytic activity and the recycling performance of the sample on CO oxidation were tested and theT100%(the temperature at which CO 100% conversion) was 230 °C in the first run and decreased by 270 and 205 °C compared with that of bulk CeO2and CeO2nanocrystal, respectively.


2014 ◽  
Vol 875-877 ◽  
pp. 1687-1692 ◽  
Author(s):  
Krit Somnuk ◽  
Gumpon Prateepchaikul

Biodiesel from a high free fatty acid (FFA) mixed crude palm oil (MCPO) can be produced to high fatty acid methyl ester (FAME) conversion by a two-step process. The first process is an acid-catalyzed esterification to reduce FFA in oil followed by a base-catalyzed transesterification process to produce biodiesel from esterified oil. In this study, the transesterification of esterified oil with methanol in the presence of potassium hydroxide (KOH) was performed in a 1,000 W ultrasonic homogenizer at a low frequency of 18 kHz. The use of high-intensity ultrasound to accelerate the reaction, the high surface power density of 1.62 W.mm-2 and the volumetric acoustic energy of 20 W.mL-1 were fixed. The objective of this study was to determine the various parameters (methanol concentration, KOH concentration, and initial temperature of oil) to produce the FAME conversion. The results showed that over 98 wt.% of FAME could be achieved with 5 g KOH/liter of oil, 15 vol.% of methanol, the total residence time of 20 seconds, and temperature of 30 oC. Moreover, the glycerides were rapidly converted to the FAME within reaction time of 10 seconds when the base-catalyst of 10 g KOH/liter of oil, and 20 vol.% of methanol were used. Consequently, the use of high-intensity ultrasonic irradiation can minimize the chemical cost, electricity cost, and reaction time.


2021 ◽  
Vol 1023 ◽  
pp. 111-118
Author(s):  
Jarernporn Thawornprasert ◽  
Wiriya Duangsuwan ◽  
Krit Somnuk

The objective of this research was to study the optimum condition of esterified oil production from low free fatty acid of mixed crude palm oil (LMCPO) by using a response surface methodology (RSM) with esterification reaction in a batch mode. LMCPO obtained from a vacuum refining process of mixed crude palm oil (MCPO) to extract the partial FFA in oil which was used as a raw materials in a food production. Therefore, remaining FFA of 6.170 wt.% in LMCPO should be reduced to less than 1 wt.% by using esterification when required these oils to use as feedstock for producing biodiesel. After esterification process, FFA in esterified oil was studied to optimize the four independent variables of methanol (5-25 vol.%), sulfuric acid (0.5-4.5 vol.%), reaction time (5-65 min) and speed of stirrer (100-500 rpm). The results showed that the optimal condition of 25 vol.% methanol, 2 vol.% sulfuric acid, 500 rpm speed of stirrer, and 30 min reaction time at 60°C reaction temperature can decreased the FFA level to less than 0.212 wt.%. However, it was found out that the high consumptions of methanol and sulfuric acid required for reducing FFA to lowest value. Thus, the selected condition of 17.4% methanol, 1.6% sulfuric acid, 300 rpm speed of stirrer, and 35 min reaction time was chosen to save the chemical contents because this condition achieved to reduce FFA to acceptable level of 1 wt.%. For the actual experiment, FFA can be decreased to 0.212 wt.%, and 1.028 wt.% respectively. The yields of 96.67 wt.% for crude esterified oil and 94.22 wt.% for pure esterified oil were achieved based on LMCPO under the selected condition.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Norzita Ngadi ◽  
Sulaiha Sulaiman ◽  
Roshanida Abd Rahman ◽  
Nurul Saadiah Lani

In this study, production of biodiesel from palm oil using cockle shell wastes as catalyst was carried out using transesterification reaction. The objectives of this study are to analyze and characterize calcium oxide (CaO) from cockle shell wastes and to determine the catalytic activity of derived shell catalyst towards the percentage yield of biodiesel produced. The effect of methanol to oil ratio, reaction time and reaction temperature were investigated. The types of esters content in biodiesel and the functional group presence in catalyst were determined using FTIR and GC-MS analysis. The results showed that the optimum condition for cockle shell wastes achieved maximum yield of biodiesel (78.05%) is at reaction temperature 50°C within 1 hour with 9:1 methanol to oil ratio. Meanwhile for commercial CaO, the maximum yield is 73.95% at 60°C within 3 hours for 3:1 methanol to oil ratio. From the result obtained, this indicated that cockle shell wastes have potential to substitute commercial CaO as catalyst in transesterification reaction. 


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 521 ◽  
Author(s):  
Bo Liu ◽  
Hongjuan Sun ◽  
Tongjiang Peng ◽  
Qian He

Ca-bentonite was used as the feedstock material for the synthesis of hydroxysodalite due to its high Al, Si content, good chemical reactivity, and natural abundance. A one-step method is proposed here to fabricate hydroxysodalite in a water bath at moderate temperature. The effects of the Na/Si molar ratio, Si/Al molar ratio, reaction time, and reaction temperature on the synthesis of hydroxysodalite have been systematically investigated here. The crystallizing phases and morphology of the synthetic products were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the Na/Si molar ratio and reaction temperature both played important roles in controlling the degree of crystallinity of the synthetic hydroxysodalite. The Si/Al molar ratio and reaction time both affect the purity of the synthetic hydroxysodalite. Optimum conditions for synthesizing hydroxysodalite using a one-step water-bath method at moderate temperature are as follows: a Na/Si molar ratio of 12, a Si/Al molar ratio of 1.0, a reaction temperature of 90 °C, and a reaction time of 12 h.


Sign in / Sign up

Export Citation Format

Share Document