scholarly journals Comparison Pan Evaporation Data with Global Land-surface Evaporation GLEAM in Java and Bali Island Indonesia

2018 ◽  
Vol 50 (1) ◽  
pp. 87
Author(s):  
Trinah Wati ◽  
Ardhasena Sopaheluwakan ◽  
Fatkhuroyan Fatkhuroyan

This paper evaluates the variability of pan evaporation (Epan) data in Java and Bali during 2003-2012 and compares to GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) data version v3.b namely actual evaporation (E) and potential evaporation (Ep) in the same period with statistical method. Gleam combines a wide range of remotely sensed observations to the estimation of terrestrial evaporation and root-zone soil moisture at a global scale (0.25-degree). The aim is to assess the accuracy of Gleam data by examining correlation, mean absolute error, Root mean square error and mean error between Epan and Gleam data in Java and Bali Island. The result shows the correlation between Epan with Ep Gleam is higher than Epan with E Gleam. Generally, the accuracy of Gleam data is a good performance to estimate the land evaporation in Java and Bali at annual and monthly scale. In daily scale, the correlation is less than 0.50 both between Epan with E Gleam and between Epan with Ep Gleam. In daily scale, the average errors ranging from 0.15 to 3.09 mm according to RMSE, MAE, and ME.The result of this study is essential in providing valuable recommendation for choosing alternative evaporation data in regional or local scale from satellite data.

2011 ◽  
Vol 8 (1) ◽  
pp. 1-27 ◽  
Author(s):  
D. G. Miralles ◽  
R. A. M. De Jeu ◽  
J. H. Gash ◽  
T. R. H. Holmes ◽  
A. J. Dolman

Abstract. A physics-based methodology is applied to estimate global land-surface evaporation from multi-satellite observations. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely sensed observations within a Priestley and Taylor-based framework. Daily actual evaporation is derived at quarter degree resolution over the world's land surface. A running water balance of the vertical profile of soil moisture in the root zone is used to estimate the effect of soil water stress on transpiration. Forest rainfall interception, evaporation from bare soil, transpiration and snow sublimation are calculated independently. The inclusion of soil moisture deficit and forest rainfall interception – by means of the Gash analytical model – leads to an improved representation of the magnitude and distribution of the latent heat flux over semiarid and forested regions. Analyses of the global results show that interception loss plays an important role in the partition of the precipitation into evaporation and water available for runoff at a continental scale. The global distribution of evaporation and its different components is analysed to understand the relative magnitude of each component over different ecosystems. This study gives new insights into the relative importance of precipitation and net radiation in driving evaporation, and how the seasonal influence of these controls varies over the different regions of the world. Precipitation is recognised as an important factor driving evaporation, not only in areas that have limited soil water availability, but also in areas of high rainfall interception and low available energy.


2011 ◽  
Vol 15 (3) ◽  
pp. 967-981 ◽  
Author(s):  
D. G. Miralles ◽  
R. A. M. De Jeu ◽  
J. H. Gash ◽  
T. R. H. Holmes ◽  
A. J. Dolman

Abstract. A process-based methodology is applied to estimate land-surface evaporation from multi-satellite information. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely-sensed observations to derive daily actual evaporation and its different components. Soil water stress conditions are defined from a root-zone profile of soil moisture and used to estimate transpiration based on a Priestley and Taylor equation. The methodology also derives evaporationfrom bare soil and snow sublimation. Tall vegetation rainfall interception is independently estimated by means of the Gash analytical model. Here, GLEAM is applied daily, at global scale and a quarter degree resolution. Triple collocation is used to calculate the error structure of the evaporation estimates and test the relative merits of two different precipitation inputs. The spatial distribution of evaporation – and its different components – is analysed to understand the relative importance of each component over different ecosystems. Annual land evaporation is estimated as 67.9 × 103 km3, 80% corresponding to transpiration, 11% to interception loss, 7% to bare soil evaporation and 2% snow sublimation. Results show that rainfall interception plays an important role in the partition of precipitation into evaporation and water available for runoff at a continental scale. This study gives insights into the relative importance of precipitation and net radiation in driving evaporation, and how the seasonal influence of these controls varies over different regions. Precipitation is recognised as an important factor driving evaporation, not only in areas that have limited soil water availability, but also in areas of high rainfall interception and low available energy.


2021 ◽  
Author(s):  
Jan De Pue ◽  
José Miguel Barrios ◽  
Liyang Liu ◽  
Philippe Ciais ◽  
Alirio Arboleda ◽  
...  

<p>Over the past decades, land surface models have evolved into advanced tools which comprise detailed process descriptions and interactions at a broad range of scales. One of the challenges in these models is the accurate simulation of plant phenology. It is a key element at the nexus of the simulated hydrological and carbon cycle, where the leaf area index (LAI) plays a major role in flux partitioning, water balance and gross primary production.<br>In this study, three well-established models are used to simulate the intrinsically coupled fluxes of water, energy and carbon from terrestrial vegetation. ORCHIDEE, ISBA-CC and the LSA-SAF algorithm each have a different approach to represent plant phenology. Whereas ISBA-CC has a fairly simple biomass allocation scheme to represent the phenological cycle, ORCHIDEE relies on a dedicated phenology module, and LSA-SAF is driven by remote-sensed forcing variables, such as LAI. Simulations were performed for a wide range of hydro-climatic biomes and plant functional types at field scale. The simulated fluxes were validated using eddy-covariance measurements, and the simulated phenology was compared to remote-sensed observations.<br>These models are tools to extrapolate leaf-level processes to global scale climate predictions. The origin of the parameters controlling phenology-induced variability in these models ranges from plant-scale lab experiments to global-scale calibration. The aim of this study is to investigate the key parameters controlling phenology-induced variability in these models.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mauricio Villarroel ◽  
João Jorge ◽  
David Meredith ◽  
Sheera Sutherland ◽  
Chris Pugh ◽  
...  

Abstract A clinical study was designed to record a wide range of physiological values from patients undergoing haemodialysis treatment in the Renal Unit of the Churchill Hospital in Oxford. Video was recorded for a total of 84 dialysis sessions from 40 patients during the course of 1 year, comprising an overall video recording time of approximately 304.1 h. Reference values were provided by two devices in regular clinical use. The mean absolute error between the heart rate estimates from the camera and the average from two reference pulse oximeters (positioned at the finger and earlobe) was 2.8 beats/min for over 65% of the time the patient was stable. The mean absolute error between the respiratory rate estimates from the camera and the reference values (computed from the Electrocardiogram and a thoracic expansion sensor—chest belt) was 2.1 breaths/min for over 69% of the time for which the reference signals were valid. To increase the robustness of the algorithms, novel methods were devised for cancelling out aliased frequency components caused by the artificial light sources in the hospital, using auto-regressive modelling and pole cancellation. Maps of the spatial distribution of heart rate and respiratory rate information were developed from the coefficients of the auto-regressive models. Most of the periods for which the camera could not produce a reliable heart rate estimate lasted under 3 min, thus opening the possibility to monitor heart rate continuously in a clinical environment.


1998 ◽  
Vol 205 (3-4) ◽  
pp. 186-204 ◽  
Author(s):  
Bhaskar J. Choudhury ◽  
Nicolo E. DiGirolamo ◽  
Joel Susskind ◽  
Wayne L. Darnell ◽  
Shashi K. Gupta ◽  
...  

2011 ◽  
Vol 8 (2) ◽  
pp. 4281-4312
Author(s):  
K. T. Rebel ◽  
R. A. M. de Jeu ◽  
P. Ciais ◽  
N. Viovy ◽  
S. L. Piao ◽  
...  

Abstract. Soil moisture availability is important in regulating photosynthesis and controlling land surface-climate feedbacks at both the local and global scale. Recently, global remote-sensing datasets for soil moisture have become available. In this paper we assess the possibility of using remotely sensed soil moisture (AMSR-E) to evaluate the results of the process-based vegetation model ORCHIDEE during the period 2003–2004. We find that the soil moisture products of AMSR-E and ORCHIDEE correlate well, in particular when considering the root zone soil moisture of ORCHIDEE. However, the root zone soil moisture in ORCHIDEE consistently overestimated the temporal autocorrelation relative to AMSR-E and in situ measurements. This may be due to the different vertical depth of the two products, to the uncertainty in precipitation forcing in ORCHIDEE, and to the fact that the structure of ORCHIDEE consisting of a single-layer deep soil, does not allow simulation of the proper cascade of time scales that characterize soil drying after each rain event. We conclude that assimilating soil moisture in ORCHIDEE using AMSR-E with the current hydrological model may significantly improve the soil moisture dynamics in ORCHIDEE.


2019 ◽  
Vol 23 (2) ◽  
pp. 787-809 ◽  
Author(s):  
Hongkai Gao ◽  
Christian Birkel ◽  
Markus Hrachowitz ◽  
Doerthe Tetzlaff ◽  
Chris Soulsby ◽  
...  

Abstract. Reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity curve (HSC), which uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module in any conceptual rainfall–runoff model. Further, coupling the HSC parameterization with the mass curve technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff generation module, HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-mapped saturation area extent. We found that HSC, HBV and TOPMODEL all perform well to reproduce the hydrograph, but the HSC module performs better in reproducing saturated area variation, in terms of correlation coefficient and spatial pattern. The HSC and HSC-MCT modules were subsequently tested for 323 MOPEX catchments in the US, with diverse climate, soil, vegetation and geological characteristics. In comparison with HBV and TOPMODEL, the HSC performs better in both calibration and validation, particularly in the catchments with gentle topography, less forest cover, and arid climate. Despite having no calibrated parameters, the HSC-MCT module performed comparably well with calibrated modules, highlighting the robustness of the HSC parameterization to describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate SuMax. This novel and calibration-free runoff generation module helps to improve the prediction in ungauged basins and has great potential to be generalized at the global scale.


2016 ◽  
Vol 20 (4) ◽  
pp. 1459-1481 ◽  
Author(s):  
Lan Wang-Erlandsson ◽  
Wim G. M. Bastiaanssen ◽  
Hongkai Gao ◽  
Jonas Jägermeyr ◽  
Gabriel B. Senay ◽  
...  

Abstract. This study presents an "Earth observation-based" method for estimating root zone storage capacity – a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.


2010 ◽  
Vol 11 (4) ◽  
pp. 880-897 ◽  
Author(s):  
C. Adam Schlosser ◽  
Xiang Gao

Abstract This study assesses the simulations of global-scale evapotranspiration from the second Global Soil Wetness Project (GSWP-2) within a global water budget framework. The scatter in the GSWP-2 global evapotranspiration estimates from various land surface models can constrain the global annual water budget fluxes to within ±2.5% and, by using estimates of global precipitation, the residual ocean evaporation estimate falls within the range of other independently derived bulk estimates. The GSWP-2 scatter, however, cannot entirely explain the imbalance of the annual fluxes from a modern-era, observationally based global water budget assessment. Inconsistencies in the magnitude and timing of seasonal variations between the global water budget terms are also found. Intermodel inconsistencies in evapotranspiration are largest for high-latitude interannual variability as well as for interseasonal variations in the tropics, and analyses with field-scale data also highlight model disparity at estimating evapotranspiration in high-latitude regions. Analyses of the sensitivity simulations that replace uncertain forcings (i.e., radiation, precipitation, and meteorological variables) indicate that global (land) evapotranspiration is slightly more sensitive to precipitation than net radiation perturbations, and the majority of the GSWP-2 models, at a global scale, fall in a marginally moisture-limited evaporative condition. Lastly, the range of global evapotranspiration estimates among the models is larger than any bias caused by uncertainties in the GSWP-2 atmospheric forcing, indicating that model structure plays a more important role toward improving global land evaporation estimates (as opposed to improved atmospheric forcing).


2016 ◽  
Author(s):  
Oliver López ◽  
Rasmus Houborg ◽  
Matthew F. McCabe

Abstract. Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological consistency in these environments, suggesting the need for continued efforts in improving satellite observations, particularly for the retrieval of evaporation, and the need to more directly account for anthropogenic influences such as agricultural irrigation into our large scale water cycle studies.


Sign in / Sign up

Export Citation Format

Share Document