scholarly journals Optimal Capacity and Location Wind Turbine to Minimize Power Losses Using NSGA-II

Author(s):  
Dieta Wahyu Asry Ningtias ◽  
F. Danang Wijaya ◽  
Lesnanto Putra Multanto

Voltage deviations and power losses in the distribution network can be handled in various ways, such as adding diesel power plants and wind turbines. Adaut Village, Tanimbar Islands Regency, Maluku Province has installed a diesel power plant with a capacity of 1,200 kW, while the average hourly electricity load is 374.9 kW. Adaut Village has high wind potential that can be used for distributed generations namely wind turbine (WT). WT can be used to improve power quality in terms of power losses and voltage deviations. In adding WT, the capacity and location must be determined to get good power quality in terms of power loss and voltage deviation. The research applied an optimization technique for determining the capacity and location of WT using non-dominated sorting genetic algorithm II (NSGAII) with an objective function of power losses and voltage deviation. In addition, the economic aspects of the power plant were calculated using the levelized cost of energy (LCOE). The research used scenarios based on the number of WT installed. The best results were obtained in scenario IV or 4 WT with 1.38 kW on Bus 2, 422.43 kW on Bus 15, 834.33 kW on Bus 30, and 380.81 kW on Bus 31 which could reduce power losses by 80% with an LCOE value of Rp7,113.15/kWh. The addition of the WT could also increase the voltage profile to close to 1 pu, which means it can minimize the voltage deviation in the distribution network.

2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


2019 ◽  
Vol 9 (21) ◽  
pp. 4695 ◽  
Author(s):  
Esmaeil Ebrahimzadeh ◽  
Frede Blaabjerg ◽  
Torsten Lund ◽  
John Godsk Nielsen ◽  
Philip Carne Kjær

It is important to develop modelling tools to predict unstable situations resulting from the interactions between the wind power plant and the weak power system. This paper presents a unified methodology to model and analyse a wind power plant connected to weak grids in the frequency-domain by considering the dynamics of the phase lock loop (PLL) and controller delays, which have been neglected in most of the previous research into modelling of wind power plants to simplify modelling. The presented approach combines both dq and positive/negative sequence domain modelling, where a single wind turbine is modelled in the dq domain but the whole wind power plant connected to the weak grid is analysed in the positive/negative sequence domain. As the proposed modelling of the wind power plant is systematic and modular and based on the decoupled positive/negative sequence impedances, the application of the proposed methodology is relevant for transmission system operators (TSOs) to assess stability easily with a very low compactional burden. In addition, as the analytical dq impedance models of the single wind turbine are provided, the proposed methodology is an optimization design tool permitting wind turbine manufacturers to tune their converter control. As a case study, a 108 MW wind power plant connected to a weak grid was used to study its sensitivity to variations in network short-circuit level, X/R ratio and line series capacitor compensation (Xc/Xg).


Author(s):  
M. D. Duran ◽  
A. Rovira

It is the purpose of this work to show how to select the best configuration as a function of the combined cycle power. It uses thermo-economic optimization technique based on flexible genetic algorithms (GA). These results will be based on a Thermoeconomic model developed in previous works, this maximizes the cash flow by choosing the correct parameters for the plant design — particularly those corresponding to the HRSG — subject to the restriction that hypothetical, but realistic turbines have already been chosen. This study begins with an analysis of the trends in the commercial gas turbines (GT) design. It was observed that in spite of the diverse companies, the design parameters as well as the turbine cost, follow certain trends depending on the turbine power. When a CCGT power plant is planned, once the GT is selected, is necessary to determine which configuration of the HRSG is the most appropriate in order to get the maximum performance and the best economical results. There is a wide variety of selections of CCGT power plants configurations. To facilitate the analysis of this ample number of CCGT systems we will apply our study to the following types of HRSG: Double pressure with and without reheater, Triple pressure levels with reheater and Triple pressure levels with reheater and supercritical pressure. As a result of this study it may be observed that some design trends should be established so as to decide which configuration (including supercritical cycles) is better to select to specific power.


Author(s):  
Nitish Kumar Singh ◽  
Dashrath Kumar

The applications of wind energy develop much rapidly than the other renewable resources such as solar, geothermal and so on in the 21st century. It becomes the third core energy resource following non-conventional fuels as oil and chemical. Electrical energy generated by wind power plants is the best ever developing and most promising renewable energy source. The wind is a clean, free and limitless energy source. Wind Energy Generation Systems (WECS) are confront with increasing demands for power quality and harmonic distortion control. With the advance in power electronics technology, the fast growth of variable speed WECS is now witness. However, the power quality still remains an important issue to be addressed thoroughly by researchers. This paper presents a comparative study on grid connected WECS having two different Wind Turbine Generator Systems (WTGS) using DFIG and PMSG.


Author(s):  
Khashiya Parveen ◽  
Prof. Shravan Vishwakarma

Hybrid energy generation which includes both wind and solar energy has grown exponentially in latest years, and this will continue. Power quality problems such as voltage-swells, voltage-sags, harmonic components, power factor, and inadequate voltage control are caused by intermittent various exposures and the incorporation of wind-turbine and Photo-voltaic power generating systems with the grid. A Static Compensator (STATCOM) is employed to enhance power-quality. The power quality enhancement method for grid-connected wind-turbine and photo voltaic power plants employing STATCOM is introduced in this paper.  The framework of the proposed methodology describes in order to improve the transient voltage stability of the large-scale wind / solar hybrid system, the STATCOM reactive power compensation device is connected to the grid.   The compensator is offered to further improve output parameters such as voltage THD, current THD and active power.


2021 ◽  
Vol 264 ◽  
pp. 04053
Author(s):  
Bоboraim Urishev ◽  
Rumiya Beytullayeva ◽  
Аsror Umirov ◽  
Оybek Almardonov

The article discusses information on the need to accumulate energy from renewable sources to improve their efficiency, as well as some examples of the integration of systems for hydraulic energy storage and renewable sources, which ensure an increase in the reliability and volume of energy generation. The method for determining the parameters of a wind power plant's hydraulic energy storage system, which is based on the balance of the daily load produced and spent on energy storage, is presented. With changing daily loads, this technique makes it possible to determine the main parameters of the complex, including the volume of accumulated water, the coefficient of energy use of the wind power station. A functional diagram of the programmed control of the pumped storage and wind power plant parameters for the optimal use of the wind potential in hydraulic energy storage is presented. Based on the results of calculations using the proposed method, the main parameters of the system based on pumped storage and wind power plant with a capacity of 100 MW were determined, the efficiency of hydraulic energy storage was determined in comparison with lithium-ion batteries.


2018 ◽  
Vol 5 (2) ◽  
pp. 224
Author(s):  
I Made Arya Supartana ◽  
Rukmi Sari Hartati ◽  
I Wayan Sukerayasa

Distributed Generation (DG) is a small power plant that can increase realibility, voltage profil, and reduce power losses in distribution network. DG interconnection locations that are less suitable can in/crease power losses. A possibility that can be done to reduce these power losses is by optimizing DG interconnection points. Optimization of the DG interconnection points on the feeder of Panji aims to minimize power losses, where the initial power losses occur at 48.2 kW. Optimization technique is using the Artificial Bee Colony (ABC) method with losses after simulation at 32.263 kW. When compared with the conditions before and after optimization there is a differ-ence in power losses of 16.035 kW, to a decrease in power losses of 33.2% from the previous loss.


2019 ◽  
Vol 125 ◽  
pp. 14001
Author(s):  
Adri Senen ◽  
Isworo Pujotomo ◽  
Yoakim Simamora

The need for new plants is needed to balance the demand for high electricity. To anticipate this, it is necessary to accelerate the achievement of the level of utilization of new and renewable energy (EBT) in the energy mix for electricity supply by encouraging the use of energy from water, biomass, solar, wind to electricity. The Biomass Power Plant (PLTBm) is one of the environmentally friendly alternative power plants that produce electricity and heat by burning biomass in boilers in this case from wood waste from furniture and old rubber trees. The Interconnection System will be implemented in this PLTBm, where interconnection with the existing 20 kV system will be carried out. Research carried out includes power flow, voltage drop, losses, and short circuit. By conducting this study, it can be seen the profile of the overall system operation before and after this interconnection. The simulation results show that the PLTBm connected to the nearest feeder point from the generator is the best choice in terms of making the system voltage better between 19.1 kV and 20.17 kV. Power losses range from 439 kW and 5005.4 Kvar as well as short circuit currents, namely 13.73 KA.


Author(s):  
Vadim Bodunov

One way to stimulate the development of renewable energy is preferential electricity tariffs for businesses, electricity consumers, including energy cooperatives and private households, whose generators produce electricity from alternative energy sources. Such a state policy exists both in Ukraine (the "green tariff") and in other countries (Feed-in tariffs). The simplified connection mechanism of generating power of private households and the fast payback period of solar power plants have led to a rapid increase in the number of such facilities. The peculiarity of network photovoltaic installations of private households is that the investment is proportional, and sometimes even less than the cost of additional reconstruction, for example, to increase the capacity of the electrical network, so, as a rule, their connection to low voltage networks is carried out without any additional changes of intersections of power lines. At the same time, according to the Law of Ukraine on the Electricity Market, the connection of generating installations to consumers, including private households, should not lead to deterioration of regulatory parameters of electricity quality. Another feature of these objects is the almost complete lack of information about the parameters of the electrical network. In the absence of reliable information, it becomes necessary to develop approximate methods for estimating the allowable capacity of solar power plants of private households depending on the place of connection, the parameters of the modern low-quality distribution network and modes of its operation. The article proposes the use of the distribution network model in the form of a line with evenly distributed load from the solar power plants in the form of a concentrated load at the corresponding point of the line. The voltage distribution along the line is simulated when the power of the solar power plant and the place of its connection change. Analytical relations are obtained for the calculation of the solar power plants power limit values to ensure the admissibility of the mode parameters according to the voltage level when varying the solar power plant connection point. A method is proposed to maintain the allowable minimum voltage levels at the terminals of consumers in short-term congested sections of the network.


Sign in / Sign up

Export Citation Format

Share Document