scholarly journals Groundwater Level Changes in Shallow Aquifer of Yogyakarta City, Indonesia: Distribution and Causes

2017 ◽  
Vol 1 (2) ◽  
pp. 89 ◽  
Author(s):  
Liliane Manny ◽  
Rilo Restu Surya Atmaja ◽  
Doni Prakasa Eka Putra

The population in Yogyakarta City, Indonesia has increased since 1970, resulting in high groundwater utilization. This normally results in a decline of groundwater level in shallow aquifer beneath the city. However, expansion of the city and urbanization effects can also have the opposite effect and lead to a rise of groundwater levels due to urban recharge. This study investigates groundwater level changes in Yogyakarta City during a time period of 30 years between 1985 and 2015. Collected data in this research are groundwater level, rainfall, population density, sewer system, and land use. Overlaying various spatial information reveals a pattern of groundwater level rise in some areas of the city by 0–12 m, whilst in other areas a decline of 0–9 m is discovered. Rising groundwater levels are mainly found in areas moderate to high population density where sewer system networks have been installed. The rising of groundwater levels is this expected to be caused by urban recharge and sewers leakage.

2013 ◽  
Vol 67 (9) ◽  
pp. 1945-1952 ◽  
Author(s):  
O. Fryd ◽  
A. Backhaus ◽  
H. Birch ◽  
C. F. Fratini ◽  
S. T. Ingvertsen ◽  
...  

Water Sensitive Urban Design (WSUD) is emerging in Denmark. This interdisciplinary desk study investigated the options for WSUD retrofitting in a 15 km2 combined sewer catchment area in Copenhagen. The study was developed in collaboration with the City of Copenhagen and its water utility, and involved researchers representing hydrogeology, sewer hydraulics, environmental chemistry/economics/engineering, landscape architecture and urban planning. The resulting catchment strategy suggests the implementation of five sub-strategies. First, disconnection is focused within sites that are relatively easy to disconnect, due to stormwater quality, soil conditions, stakeholder issues, and the provision of unbuilt sites. Second, stormwater runoff is infiltrated in areas with relatively deep groundwater levels at a ratio that doesn't create a critical rise in the groundwater table to the surface. Third, neighbourhoods located near low-lying streams and public parks are disconnected from the sewer system and the sloping terrain is utilised to convey runoff. Fourth, the promotion of coherent blue and green wedges in the city is linked with WSUD retrofits and urban climate-proofing. Fifth, WSUD is implemented with delayed and regulated overflows to the sewer system. The results are partially adopted by the City of Copenhagen and currently under pilot testing.


2021 ◽  
Author(s):  
GA O'Brien ◽  
SC Cox ◽  
John Townend

©2016. American Geophysical Union. All Rights Reserved. Geoengineered groundwater systems within seven large (23 × 104–9 × 106 m2), deep-seated (40–300 m), previously slow-creep (2–5 mm/yr.) schist landslides in the Cromwell Gorge responded systematically to 11 large (Mw > 6.2) earthquakes at epicentral distances of 130–630 km between 1990 and 2013. Landslide groundwater is strongly compartmentalized and often overpressured, with permeability of 10−17 to 10−13 m2 and flow occurring primarily through fracture and crush zones, hindered by shears containing clayey gouge. Hydrological monitoring recorded earthquake-induced meter- or centimeter-scale changes in groundwater levels (at 22 piezometers) and elevated drainage discharge (at 11 V notch weirs). Groundwater level changes exhibited consistent characteristics at all monitoring sites, with time to peak-pressure changes taking ~1 month and recovery lasting 0.7–1.2 years. Changes in weir flow rate near instantaneous (peaking 0–6 h after earthquakes) and followed by recession lasting ~1 month. Responses at each site were systematic from one earthquake to another in terms of duration, polarity, and amplitude. Consistent patterns in amplitude and duration have been compared between sites and with earthquake parameters (peak ground acceleration (PGA), seismic energy density (e), shaking duration, frequency bandwidth, and site amplitude). Shaking at PGA ~0.27% g and e ~ 0.21 J m−3 induced discernable gorge-wide hydrological responses at thresholds comparable to other international examples. Groundwater level changes modeled using a damped harmonic oscillator characterize the ability of the system to resist and recover from extrinsic perturbations. The observed character of response reflects spectral characteristics as well as energy. Landslide hydrological systems appear most susceptible to damage and hydraulic changes when earthquakes emit broad-frequency, long-duration, high-amplitude ground motion.


2016 ◽  
pp. 23-27 ◽  
Author(s):  
T. V. Semenova ◽  
D. I. Danina

The problem of raising the level of ground urban land Tyumen now has priority. This is due to the intensive development of the city. It is established, natural and technogenic factors have an impact on the groundwater level regime in built-up part of the city. Since 2014 within the territory of Tyumen fixed the next cycle of many years of rise in groundwater levels.


Author(s):  
Abdulkhaev Zokhidjon Erkinjonovich ◽  
Madraximov Mamadali Mamadaliyevich ◽  
Shoyev Mardon Axmadjon o’g’li

This paper discusses the current effects of groundwater levels on buildings and engineering communications in Fergana and ways to overcome them. The paper considers methods of lowering the groundwater level in the territory of the city of Fergana, using closed horizontal drainage and given hydrological calculations.


2020 ◽  
Vol 19 (3) ◽  
pp. 233-245
Author(s):  
Nazile Ural ◽  
◽  
Abdulselam Gergin

In this study, the foundation systems of a structure on different soil profiles and different groundwater levels are modeled and analyzed. Several difficulties encounter during the basic design and implementation phases. In particular, the high groundwater level, the load on the soil under the load-bearing capacity, liquefaction causes many problems such as emergence. Within the scope of this study, foundation systems which based on six different soil profiles with a high groundwater level modeled with Plaxis 2D program. Thus, the stress and displacement conditions of the soil about the foundation system as a result of the soil properties and groundwater level changes in problematic soils investigated.


2021 ◽  
Author(s):  
GA O'Brien ◽  
SC Cox ◽  
John Townend

©2016. American Geophysical Union. All Rights Reserved. Geoengineered groundwater systems within seven large (23 × 104–9 × 106 m2), deep-seated (40–300 m), previously slow-creep (2–5 mm/yr.) schist landslides in the Cromwell Gorge responded systematically to 11 large (Mw > 6.2) earthquakes at epicentral distances of 130–630 km between 1990 and 2013. Landslide groundwater is strongly compartmentalized and often overpressured, with permeability of 10−17 to 10−13 m2 and flow occurring primarily through fracture and crush zones, hindered by shears containing clayey gouge. Hydrological monitoring recorded earthquake-induced meter- or centimeter-scale changes in groundwater levels (at 22 piezometers) and elevated drainage discharge (at 11 V notch weirs). Groundwater level changes exhibited consistent characteristics at all monitoring sites, with time to peak-pressure changes taking ~1 month and recovery lasting 0.7–1.2 years. Changes in weir flow rate near instantaneous (peaking 0–6 h after earthquakes) and followed by recession lasting ~1 month. Responses at each site were systematic from one earthquake to another in terms of duration, polarity, and amplitude. Consistent patterns in amplitude and duration have been compared between sites and with earthquake parameters (peak ground acceleration (PGA), seismic energy density (e), shaking duration, frequency bandwidth, and site amplitude). Shaking at PGA ~0.27% g and e ~ 0.21 J m−3 induced discernable gorge-wide hydrological responses at thresholds comparable to other international examples. Groundwater level changes modeled using a damped harmonic oscillator characterize the ability of the system to resist and recover from extrinsic perturbations. The observed character of response reflects spectral characteristics as well as energy. Landslide hydrological systems appear most susceptible to damage and hydraulic changes when earthquakes emit broad-frequency, long-duration, high-amplitude ground motion.


2015 ◽  
Vol 3 (2) ◽  
Author(s):  
Doni Prakasa Eka Putra

Since 1980s, accelerated by urbanization, Yogyakarta City was shifting to many directions defined by main road networks and service centres. Urbanization has transformed rural dwellings to become urban settlements and generated urban agglomeration area. Until now, new business centres, education centres and tourism centres are growing hand in hand with new settlements (formal or informal) without proper provision of water supply and sanitation system. This condition increase the possibility of groundwater contamination from urban wastewater and a change of major chemistry of groundwater as shallow unconfined aquifer is lying under Yogyakarta City. To prove the evolution of groundwater chemistry, old data taken on 1980s were comparing with the recent groundwater chemistry data. The evaluation shows that nitrate content of groundwater in 1980s was a minor anion, but nowadays become a major anion, especially in the shallow groundwater in the centre of Yogyakarta City. This evidence shows that there is an evolution of groundwater chemistry in shallow groundwater below Yogyakarta City due to contamination from un-proper on-site sanitation system. Keywords: Urbanization, Yogyakarta city, rural dwellings, settlements, agglomeration, contamination, groundwater


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


Sign in / Sign up

Export Citation Format

Share Document