scholarly journals IN VITRO CYTOTOXICITY AND ANTIOXIDANT EVALUATION OF BIOGENIC SYNTHESIZED GOLD NANOPARTICLES FROM MARSILEA QUADRIFOLIA ON LUNG AND OVARIAN CANCER CELLS

2018 ◽  
Vol 10 (5) ◽  
pp. 153 ◽  
Author(s):  
Balashanmugam P. ◽  
Mosa Christas K. ◽  
Kowsalya E.

Objective: The biogenic gold nanoparticles are considered to be extremely impressive for its wide range of applications in pharmaceutics and therapeutics. The present study was aimed at the biogenic synthesis of gold nanoparticles (AuNPs) from Marsilea quadrifolia aqueous extract and to investigate its antioxidant property and cytotoxic effect on human ovarian teratocarcinoma (PA-1) and lung adenocarcinoma (A549) cell lines.Methods: The biogenic AuNPs was synthesized using an aqueous extract of Marsilea quadrifolia. The synthesized biogenic AuNPs were characterized by ultraviolet (UV) visible spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). The biogenic AuNPs was assessed for its stability over a period of time and antioxidant activity. The cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines was studied using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.Results: The synthesized biogenic AuNPs showed peculiar ruby red color and a surface plasmon resonance (SPR) peak at 544 nm in the UV-Vis spectrum. The characterization of biogenic AuNPs by TEM, EDX and XRD revealed well dispersed spherical particles ranging from 10-40 nm and the presence of elemental gold and its crystalline nature, respectively. The AuNPs showed good stability and the scavenging activity at 50 μg/ml. The in vitro cytotoxicity of biogenic AuNPs against PA-1 and A549 cell lines recorded half maximal inhibitory concentration (IC50) of 45.88 μg/ml and 52.015 μg/ml, respectively.Conclusion: The biogenic AuNPs demonstrated superior antioxidant and antiproliferative activities against cancer cell lines.

2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Putri Nur Hidayah Al-Zikri ◽  
Muhammad Taher ◽  
Deny Susanti ◽  
Solachuddin Jauhari Arief Ichwan

Luvunga scandens belongs to the family of Rutaceae which usually inhabit tropical and moist environment. This plant is known as ‘Mengkurat Jakun’ among locals and used traditionally to treat fever and fatigue via decoction. The aim of this study was to investigate the cytotoxic activity of the leaves and stems extracts of L. scandens extract. Extracts of the leaves and stems were obtained from sequential extraction procedures by various organic solvents. All extracts were subjected to cytotoxic study by 3-(4, 5-dimethylthaizol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. In in vitro cytotoxicity assay, all L. scandens extracts exhibited cytotoxicity against human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. The IC50 values of dichloromethane and methanol extracts from the leaves of L. scandens against MCF-7 cell line were 62.5 µg/mL and 88.0 µg/mL, respectively, whereas IC50 of methanol extract from stem was 81.0 µg/mL. All extracts were less active against A549 cell line where IC50 value were not be determined. The present findings revealed the potential of L. scandens as a cytotoxic agent against MCF-7 cell line. However, further studies should be planned to evaluate role of the plant in cytotoxic activity.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2888-2888
Author(s):  
Abhinav B. Chandra ◽  
Jack Burton ◽  
Rhona Stein ◽  
Susan Chen ◽  
Nidhi Mishra ◽  
...  

Abstract Abstract 2888 Background: CD74 (HLA-DR-associated invariant chain) is expressed alone or along with DR in a wide range of hematologic cancers and solid tumors. Humanized anti-CD74 mAb, milatuzumab (Immunomedics, Morris Plains, NJ), exhibits direct cytotoxicity for NHL, CLL and MM cell lines, and is undergoing clinical evaluation for treatment of these malignancies. CD74 is upregulated by interferons in hematologic and epithelial cancer cell lines. Here we present the results of our analysis of CD74 expression and function in AML, and the effect of CD74 upregulation by treatment with IFN-γ on the cytotoxicity of milatuzumab for AML cell lines. Methods: CD74 expression in bone marrow biopsy (BMB) specimens from non-M3 AML patients was evaluated by immunohistochemistry and, for the 3 human AML cell lines, by flow cytometry, with/without permeabilization and with/without IFN-γ (40 and 200 U/mL). These cell lines were also tested in proliferation assays for responses to milatuzumab, with/without IFN-γ. Also, assessment of apoptosis and cellular signaling was performed. Results: In the initial group of AML cases, 13/14 BMB specimens showed moderate to strong CD74 expression by leukemic blasts, which was mostly intracellular, usually with a perinuclear distribution. Three AML cell lines also showed moderate to strong expression of CD74, which was mostly intracellular. Without IFN-γ, surface expression of CD74 was present, but IFN-γ treatment of these 3 lines resulted in upregulation of surface CD74 by 69–117%. Much higher levels of intracellular CD74 were observed in all 3 lines (with and without IFN-γ), with IFN-γ-induced upregulation of intracellular CD74 in all 3 lines (from 85%-868%; P<0.001). In 2/3 lines, IFN-γ increased milatuzumab-mediated growth inhibition (23.7 to 44.8% and -3.9 to 30.9%, P=0.01 and P<0.05, respectively). Cytotoxicity was in part due to apoptosis, as significant increases in Annexin V binding (P=0.01) were observed after treatment with IFN-γ plus milatuzumab. Initial experiments addressing cellular signaling suggest a role for AKT, because phosphorylated AKT levels increased (P=0.06) in response to IFN-γ + milatuzumab. Conclusions: CD74 is expressed in AML patient specimens and in AML cell lines, with the majority of CD74 expression found intracellularly. Cell surface and cytoplasmic expression of CD74 were upregulated in AML lines after IFN-γ exposure. This increased expression resulted in increased cytotoxicity of the anti-CD74 mAb, milatuzumab, in 2/3 AML lines. This effect was through apoptosis and involved the AKT pathway. Thus, AML is another cancer type where combined IFN-γ and milatuzumab treatment may be useful. Supported in part by NIH grant PO1-CA103985 (DMG). Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 19 (5) ◽  
pp. 707-717 ◽  
Author(s):  
Eduardo R. Cole ◽  
Jean P. de Andrade ◽  
João F. Allochio Filho ◽  
Elisângela F. P. Schmitt ◽  
Anderson Alves-Araújo ◽  
...  

Background: Amaryllidaceae plants are known to be a great source of alkaloids, which are considered an extensive group of compounds encompassing a wide range of biological activities. The remarkable cytotoxic activities observed in most of the Amaryllidaceae alkaloids derivatives have prompt the chemical and biological investigations in unexplored species from Brazil. Objective: To evaluate the cytotoxic and genotoxic properties of alkaloids of Griffinia gardneriana and Habranthus itaobinus bulbs and study the role of caspase-3 as a molecular apoptosis mediator. Methods: Methanolic crude extracts of Griffinia gardneriana and Habranthus itaobinus bulbs were submitted to acid-base extraction to obtain alkaloid-enriched fractions. The obtained fractions were fractionated using chromatographic techniques leading to isolation and identification of some alkaloids accomplished via HPLC and 1H-NMR, respectively. Molecular docking studies assessed the amount of free binding energy between the isolated alkaloids with the caspase-3 protein and also calculated the theoretical value of Ki. Studies have also been developed to evaluate in vitro cytotoxicity and genotoxicity in such alkaloids and apoptosis activation via the caspase pathway using both tumor and normal cell lines. Results: Seven alkaloids were isolated and identified. Among these, 11-hydroxyvittatine and 2-α-7- dimethoxyhomolycorine were not cytotoxic, whereas tazettine, trisphaeridine, and sanguinine only showed activity against the fibroblast lineage. Lycorine and pretazettine were 10 to 30 folds more cytotoxic than the other alkaloids, including cancerous lines, and were genotoxic and capable of promoting apoptosis via the caspase-3 pathway. This result supports data obtained in docking studies wherein these two compounds exhibited the highest free energy values. Conclusion: The cytotoxicity assay revealed that, among the seven alkaloids isolated, only lycorine and pretazettine were active against different cell lines, exhibiting concentration- and time-dependent cytotoxic actions alongside genotoxic action and the ability to induce apoptosis by caspase-3, a result consistent with those obtained in docking studies.


Author(s):  
Ju Li ◽  
Khodabakhsh Rashidi ◽  
Behnam Mahdavi ◽  
Samaneh Goorani ◽  
Mohammad Karimian ◽  
...  

IntroductionRecently, various nanoparticles containing medicinal plants have been specifically designed to deliver anticancer drugs and nucleic acids such as DNA and RNA to cancer cells and as a result, they open up new avenues in cancer treatment strategies. In this study, gold nanoparticles were synthesized in aqueous medium using Nigella damascena extract as ‎stabilizing and reducing agents. ‎Material and methodsThe synthesized nanoparticles (AuNPs) were characterized using different techniques including UV-Vis. and ‎FT-IR spectroscopy, and Transmission electron microscopy (TEM). TEM images exhibited a uniform spherical ‎morphology in size of 21.64 nm for the biosynthesized nanoparticles. In the cellular and molecular part of the ‎recent study, the treated cells with AuNPs were assessed by MTT assay for 48h about the cytotoxicity and anti-‎human ovarian cancer ‎ properties on normal (HUVEC) and ovarian cancer cell lines i.e. PA-1, Caov-3, SW 626, ‎and SK-OV-3. ‎ResultsThe viability of malignant ovarian‎ cell line reduced dose-dependently in the presence of AuNPs. The IC50 of ‎AuNPs were 232‎, ‎204‎, ‎193‎, and ‎288 µg/mL against PA-1, Caov-3, SW 626, and SK-OV-3 cell lines, ‎respectively. In the antioxidant test, the IC50 of AuNPs and BHT against DPPH free radicals were 151 and 142 ‎‎µg/mL, respectively. ‎ConclusionsAfter clinical study, gold nanoparticles containing Nigella damascena leaf aqueous extract may be used to ‎formulate a new chemotherapeutic drug or supplement to treat the several types of human ovarian cancer.‎


2020 ◽  
Vol 17 (4) ◽  
pp. 1169
Author(s):  
Shaymaa Rajab Baqer ◽  
Abdulkareem Alsammarraie ◽  
Mahasin Alias ◽  
Mohammad Al-Halbosiy ◽  
Amaal Sadiq

Titanium dioxide nanotubes were synthesized by anodizing Ti sheets in the ethylene glycol solution and were covered in Pt nanoparticles onto the surface of TiO2NTs using electrodeposition method from using five derivatives of Mannich base Pt complexes which have been used as precursor of platinum. The mean size, shape, elemental composition of the titanium dioxide nanotubes and platinum deposited on the template were evaluated by different techniques such as field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction pattern (XRD), and energy dispersive X-ray (EDX) technique. From all these analyses, the TiO2NTs prepared and Ptnanoparticles deposited on it were identified. The diagnoses proved that all the Pt nanoparticles have a size less than 50 nm. The MCF-7 cancer cell lines and WRL68 normal cell lines were treated with concentration 800, 400,200,100, 50, 25, 12.5µg\ml of TiO2NTs and Pt\TiO2NTs(1) and (2) for 48hours using MTT assay.IC50 and inhibition rate were calculated. The result shows that the Pt\TiO2NTs have more inhibition effect on cancer cell lines than TiO2NTs array.


Polyhedron ◽  
2014 ◽  
Vol 68 ◽  
pp. 312-318 ◽  
Author(s):  
Melina A. Mondelli ◽  
Angelica E. Graminha ◽  
Rodrigo S. Corrêa ◽  
Monize M. da Silva ◽  
Andréa P. Carnizello ◽  
...  

Author(s):  
Mojgan Azadpour ◽  
Mohammad Mehdi Farajollahi ◽  
Ali Mohammad Varzi ◽  
Pejman Hashemzadeh ◽  
Hossein Mahmoudvand ◽  
...  

Introduction: This study aimed to evaluate the antioxidant property of silymarin (SM) extracted from the seed of Silybum marianum and its anticancer activity on KB and A549 cell lines following 24, 48, and 72 h of treatment. Methods: Ten grams of powdered S. marianum seeds were defatted using n-hexane for 6 hours and then extracted by methanol. The silymarin extracted of extraction components The extracted components of silymarin were measured by spectrophotometric assay and HPLC analysis. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, phenol content, total flavonoid content, and total antioxidant capacity were measured to detect the antioxidant properties of SM. The anticancer activity of the SM on cell lines evaluated by MTT. Results: In HPLC analysis, more than 50% of the peaks were related to silibin A and B. SM was reducedDPPH (the stable free radical) with a 50% inhibitory concentration (IC50) of 6.56 μg/ ml in comparison with butylated hydroxyl toluene (BHT), which indicated an IC50 of ~3.9 μg/ ml.The cytotoxicity effect of SM on the cell lines was studied by MTT assay. The cytotoxicity effect of the extracted silymarin on KB and A549 cell lines was observed up to 80 and 70% at 156 and 78 µg/ml, respectively. The IC50 value of the extracted SM on KB and A549 cell lines after 24 hours of treatment was seen at 555 and 511 µg/ml, respectively. Conclusion: Due to the good antioxidant and anticancer properties of the isolated silymarin, its use as an anticancer drug is suggested.


2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


2021 ◽  
Vol 22 (7) ◽  
pp. 3691
Author(s):  
Oliver Schmutzler ◽  
Sebastian Graf ◽  
Nils Behm ◽  
Wael Y. Mansour ◽  
Florian Blumendorf ◽  
...  

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


Sign in / Sign up

Export Citation Format

Share Document