scholarly journals SUPEROXIDE DISMUTASE LOADED NIOSOMES DELIVERY TO HAIR FOLLICLES: PERMEATION THROUGH SYNTHETIC MEMBRANE AND GUINEA PIG SKIN

Author(s):  
MASOUD ALI KARAMI ◽  
MARZIE JALILI RAD ◽  
BEHZAD SHARIF MAKHMAL ZADEH ◽  
ANAYATOLLAH SALIMI

Objective: Alopecia aretea is associated with an increase in free radicals causing damage to hair follicles. Superoxide dismutase (SOD) with sufficient penetration through hair follicles, can prevent their death by its strong antioxidant effects. SOD with high molecular weight underwent limitation in follicular delivery. The aim of this study was the improvement of SOD localization into hair follicles. Methods: SOD-loaded niosomes were prepared by thin layer hydration method and were used as a vehicle for delivery to hair follicles through guinea pig skin and the synthetic membrane. Particle size, entrapment efficiency, drug release, and permeability parameters through hairly and non-hairly pig skin compared with a synthetic membrane were evaluated. Results: Niosomes demonstrated 152-325 nm particle size and the SOD burst and sustained release from niosomes were mainly controlled by diffusion and dissolution phenomena. SOD was protected against degradation by niosomes and after six months, enzyme content and activity decreased less than 5%. In comparison with free SOD, niosomes increased SOD affinity to penetration through follicles by interaction with sebum. Likewise, niosome's characters such as type of surfactant, solid lipid/liquid lipid ratio played critical roles on SOD deposition on hair follicles. Conclusion: Synthetic membrane and hairy guinea pig skin demonstrated similar barrier property against free-SOD thereby implying that free SOD does not interact with guinea pig sebum. Niosomes can introduce a suitable carrier for SOD localization into the hair follicles.

1964 ◽  
Vol 12 (7) ◽  
pp. 538-544 ◽  
Author(s):  
MAX WACHSTEIN ◽  
ELIZABETH MEISEL

By using an improved benzidine technique, peroxidase activity can be demonstrated in various locations in mammalian tissues. A relatively formalin resistant enzyme is found in hemoglobin and is also associated with mitochondria of striated muscle and heart. A somewhat less formalin resistant peroxidase occurs in the granules of myeloid and mast cells. A relatively formalin sensitive peroxidase is present in a number of additional locations, e.g. the acinar cells in thyroid and salivary gland, the medulla of the kidney, in hair follicles of the guinea pig skin and Kupffer cells of the liver.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Laksmi Ambarsari ◽  
Riska Febrianti ◽  
Edy Djauhari Purwakusumah

Curcuma (Curcuma xanthorrhiza) is an Indonesian herbs plant with antioxidant activity. This research aimed to measure the increase of curcuminoids bioavailability through the effectivity of nanoparticle curcuminoids as an antioxidant for carbon tetrachloride (CCl4) induced rats. Nanoparticle curcuminoids were produced by homogenization-ultrasonication method showed results particle size of curcuminoids nanoparticle was 141.85±38.82 nm with polydispersity index was 0.233 and entrapment efficiency was 71%. During the treatment, the rat’s body weight was increased. Clinical symptoms of rats (behavior and feces) were normal. Nanoparticle curcuminoids can decrease malondialdehyde concentrations and increase peroxide, glutathione peroxide, and superoxide dismutase activity.   Keywords :  antioxidant, curcuminoid, solid lipid nanoparticle, Curcuma.


1997 ◽  
Vol 289 (10) ◽  
pp. 603-605 ◽  
Author(s):  
S. Kishimoto ◽  
Makoto Nagata ◽  
Hideya Takenaka ◽  
R. Shibagaki ◽  
Hirokazu Yasuno

2019 ◽  
Vol 10 (1) ◽  
pp. 4728-4733

Most of the research on Diabetes has been focused on synthetic compound however the disease burden of Diabetes has not been reduced, natural chemistry has provided various safer options in different disease areas. Hesperidin (bioflavonoid) has shown good promise in anti-diabetes efficacy however its bioavailability is low. In this work, SLN of Hesperidin wasprepared, physiochemically evaluated and tested for anti-diabetic potential. Various drug- lipid ratio were tested along with other formulation parameter for fabrication of formulation and optimization. The optimized formulation has been shownuniform particle size with negative surface charge with more than 90% entrapment efficiency and 91.45% drug release. The formulation exhibited Korsmeyer-Peppas release kinetic. The optimize formulation showed 21 % increase in anti-diabetes activity of hesperidin.


Author(s):  
Ashish Y. Pawar ◽  
Khanderao R. Jadhav ◽  
Komal D. Ahire ◽  
Tushar P. Mahajan

The aim of the present work was to formulate and evaluate Miconazole nitrate (MN) polymeric nanoparticles (NPs) for systemic delivery of the active ingredient after topical administration. The Solvent evaporation approach was used to make nanoparticles for topical delivery of MN. Particle size, entrapment efficiency and SEM were all measured in MN-SLN. A consistent size distribution (PI 0.300) was used to generate aqueous NPs dispersions with a mean particle size less than 250 nm. After 3 months of storage, the produced semi-solid systems had a mean particle size of less than 250 nm and a PI of less than 0.500. The F5 formulation was been chosen as the model formulation from among the nine nanoparticle formulations developed (F1 to F9). The reason for this was that, according to the ICH stability guidelines, formulation F5 was judged to be optimal and stable. The F5 formulations of miconazole nanoparticles shows the highest entrapment efficiency (93.28%) and drug loading (86.64%). In conclusion, there are two major advantages of using miconazole nanoparticle drug delivery systems. i.e., they are topical preparations that assemble in the hair follicles and wrinkles to produce a systemic and local action. It is possible that nanoparticles will be the most effective treatment for fungal skin infections.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2020 ◽  
Vol 17 (1) ◽  
pp. 172-183
Author(s):  
Nandanwadkar Shrikrishna Madhukar Hema ◽  
Mastiholimath Vinayak Shivamurthy ◽  
Pulija Karunakar

Introduction: Capsaicin (8-methy-N-vanillyl-6-nonenamide), a potential analgesic derived from Capsicum annuum (Chili peppers), widely used from ancient times for its pharmacological activities such as anti-inflammatory, anti-oxidant and analgesic and provides relief from migraine and diabetes. But for obvious reasons, capsaicin cannot be administered directly. The present work was designed with a focus to comply with mandatory requirement in various pharmacopeias to know the actual content of API present in final formulations. The formulation (TS3) consisting of 3% lipid, with 4:6 ratio of the polymer and solvent, was found to be the optimized formulation, which gave the best evaluation with regard to the particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies and highest drug entrapment efficiency (68.34±4.24)%. The prepared transferosome formulation was subjected to characterization by validated HP-TLC method consisting of N-Hexane: Tert- Iso-butyl-methyl ether in ratio (5:15) v/v. Linearity was performed in the range of 50-1500 ng/spot with LOD/LOQ 50 ng and 150 ng, with regression analysis (R) of 99.91%. Recovery analysis was performed at 3 different levels at 80, 100 and 120 with an average recovery of 106.97%, respectively. Till now, no analytical method has been reported, associated with the characterization of pharmaceutical nano-forms (Capsaicin), like transferosomes. Thus, the maiden validated HP-TLC method for concurrent analysis of capsaicin as API in nano-transferosome may be employed in process quality control of formulations containing the said API. Background: The irritability and adverse effects post application, leading to inflammation and neural pain at the site of administration of newly Capsaicin API and its chemical entities and marketed formulations are usually related to poor permeability, leading to drug complex reactions in the development phases or therapeutic failure along with the quantification of the same in blood plasma. However, advancement in drug formulations with the use of polymer: alcohol ratio and modernized analytical techniques for the quantification of Pharmaceutical APIs seems to be emerging and promising for overcoming pain and related inflammatory complications by formulating the APIs in Transferosome formulation with Validated HP-TLC technique being used as an effective economic and precise tool for quantitative analysis of APIs in their respective nano-forms. Objective: The study proposes a novel standardized method development and validation of pharmaceutical nanoforms with Capsaicin as API. Method: Capsaicin Transferosomes were formulated using Ultra probe sonication by utilizing different proportions of phospholipid 90G dissolved in a mixture of ethanol and propylene glycol. The formulation was subjected to Dynamic Light Scattering (DLS) technique for nano-particle analysis followed by characterization with respect to particle size, polydispersity index, zeta potential and entrapment efficiency. The morphological study of vesicles was determined using SEM and TEM. A Validated HP-TLC method for the identification and determination of Capsaicin in transferosomes formulation was performed as per the ICH guidelines. Results: The formulation gave the best evaluation for particle size (97.03±2.68) nm, polydispersity index (0.20±0.00), higher zeta potential (61.28±2.06) mv, morphological studies (SEM & TEM) and highest drug entrapment efficiency (68.34±4.24)%. DSC thermograms and FTIR spectral patterns confirmed no physical interaction by polymers with API. The prepared formulation was then characterized using HP-TLC method. The best resolution was found in NHexane: Tert-Isobutyl methyl ether in a ratio of 5:15 v/v. The Rf was found to be 0.3±0.03. Linearity was performed in a range of 50-1500 ng/spot, with regression analysis (R) of 99.91% Further, recovery analysis was done at 3 different levels as 80, 100 and 120 with an average recovery of 106.97%. The LOD/LOQ was found to be 50 and 150 ng, respectively. Precision was carried out in which % RSD was found to be precise and accurate. Conclusion: The outcomes of the present study suggested that the proposed novel formulation analyzed by Validated planar chromatographic technique (HP-TLC) for Capsaicin quantification in nanoforms may be employed as a routine quality control method for the said API in various other formulations.


Sign in / Sign up

Export Citation Format

Share Document