FORMULATION AND EVALUATION OF STABILIZED EPROSARTAN NANOSUSPENSION

Author(s):  
M. SANTHOSH RAJA ◽  
K. VENKATARAMANA

Objective: The objective of the current study is to enhance the solubility of Eprosartan mesylate a BCS Class II drug by employing the nanoprecipitation technique. Methods: Polymeric nanoparticles of Eprosartan mesylate were prepared by precipitation technique with various polymers like PVP K30, HPMC K15M, and Eudragit L100 in various ratios. The incompatibility issues which may arise between the drug and polymers were tested by differential scanning calorimetry (DSC). The formed nanosuspensions were evaluated for various parameters like particle size, zeta potential, drug content, and dissolution testing. Results: Among all the nanosuspension formulations, E12 formulation prepared with Eudragit L 100 showed better evaluation characteristics. SEM and DSC analysis showed no major interactions with the excipients. The maximum drug release was showed at 12h. The formulation E12 showed the particle size of 81.5±5.5 nm and zeta potential of-55.1mv. Conclusion: The nano-precipitation method improved the dissolution as well as the bioavailability of Eprosartan mesylate nanosuspension.

Author(s):  
Sejal Patel ◽  
Anita P Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. Poor solubility and slow dissolution rate major challenges in upcoming and existing therapeutically active compound. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is Biopharmaceutical Classification System Class-II drug having low solubility and high permeability, antihypertensive drug has lower bioavailability. The purpose of the present study was to improve solubility as well dissolution profile of Benidipine HCL. BND nanosuspension was formulated using precipitation technique. Various polymers were evaluated  viz. HPMC E15, Tween 20, PVP K30 in preliminary trial to stabilized nanosuspension but PVP K30 was selected among them. The solubility of BND was carried out using different solvents like Ethanol, Acetonitrile; Acetone. Ethanol was used as a preferred solvent as BND shows high solubility in it.  The effect of different important process parameters e.g. selection of polymer concentration X1(10 mg), solvent concentration X2 (0.2 ml) were investigated by Central Composite factorial design to accomplish desired particle size and rate of dissolution. Stirring speed and time of stirring was kept constant as 1000 rpm and 2h respectively. To achieve optimized batch, 9 formulations (F1-F9) were prepared.  The optimized batch had 237 nm particle size Y1, and showed in-vitro dissolution Y2 98±0.72 % in 30 mins related to pure BND (58±0.25%) and zeta potential was -15.3. None of interaction between drug and polymer was confirmed by Differential scanning calorimetry (DSC) and FT-IR analysis. The obtained results showed that issues related particle size (nm) and rate of dissolution of BND has been solved when nanosuspension can be prepared by precipitation method by considering optimized parameter due to formation of nanosized particles


2020 ◽  
Vol 11 (2) ◽  
pp. 2657-2664
Author(s):  
Santhosh Raja M ◽  
Venkataramana K

Rosuvastatin calcium is a BCS class II drug which is used as hyper lipidemic. Many of BCS class II drugs offer the disadvantage of solubility, to overcome the issue of solubility nanoparticle preparation is an promisable approach. A simple and efficient technique for the preparation of nanoparticles is precipitation technique. Polymeric nano particles have been prepared by employing nano precipitation technique. The nanosuspensions were prepared by using PVP K30, HPMC K15M, Eudragit L100 in various ratios using precipitation technique. The compatibility between the drug and various ingredients are tested by DSC. The formed nanoparticles were evaluated for various testing parameters like particle size, zetapotential, drug content and dissolution testing. Among all the formulations the nanosuspension prepared with Eudragit L 100 showed better characteristics. The dissolution test showed the drug release for 12 hours. The best formulation showed the particle size of 100.5 ± 5.4 nm and zeta potential of -55.1 mv. The invivo studies on the wistar rats showed better pharmacokinetic parameters when compared to the pure drug. Nano precipitation method was successfully employed to prepare Rosuvastatin calcium nanosuspension to improve the dissolution as well as bioavailability.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 129
Author(s):  
Hassan Shah ◽  
Asadullah Madni ◽  
Muhammad Muzamil Khan ◽  
Fiaz-ud-Din Ahmad ◽  
Nasrullah Jan ◽  
...  

The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08–206.4 ± 2.26 nm, zeta potential was −17.8 ± 1.26 to −24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.


2015 ◽  
Vol 1112 ◽  
pp. 489-492
Author(s):  
Ali Mufid ◽  
M. Zainuri

This research aims to form particles of hematite (α-Fe2O3) with a basis of mineral iron ore Fe3O4 from Tanah Laut. Magnetite Fe3O4 was synthesized using co-precipitation method. Further characterization using X-ray fluorescence (XRF) to obtain the percentage of the elements, obtained an iron content of 98.51%. Then characterized using thermo-gravimetric analysis and differential scanning calorimetry (TGA-DSC) to determine the calcination temperature, that at a temperature of 445 °C mass decreased by 0.369% due to increase in temperature. Further Characterization of X-ray diffraction (XRD) to determine the phases formed at the calcination temperature variation of 400 °C, 445 °C, 500 °C and 600 °C with a holding time of 5 hours to form a single phase α-Fe2O3 hematite. Testing with a particle size analyzer (PSA) to determine the particle size distribution, where test results indicate that the α-Fe2O3 phase of each having a particle size of 269.7 nm, 332.2 nm, 357.9 nm, 412.2 nm. The best quantity is shown at a temperature of 500 °C to form the hematite phase. This result is used as the calcination procedure to obtain a source of Fe ions in the manufacture of Lithium Ferro Phosphate.


Author(s):  
PRASANTA KUMAR MOHAPATRA ◽  
SIREESHA ◽  
VAIBHAV RATHORE ◽  
HARISH CHANDRA VERMA ◽  
BIBHUTI PRASAD RATH ◽  
...  

Objective: The motivation behind the current examination was to build the solvency and dissolution rate of an antihypertensive drug telmisartan by the planning of nanosuspension by precipitation method at the research facility scale. We researched the nanoparticle manufacture of telmisartan employing a 33 factorial experimental configuration considering the impacts of nanosuspension on the physical, morphological, and dissolution properties of telmisartan. Methods: To get ready, nanosuspension particles of an ineffectively dissolvable drug are moreover of a drug solution to the anti-solvent leads to abrupt supersaturation and precipitation the making of nanoparticles. The nanosuspension particles of a poorly soluble drug loaded with urea and surfactants (sodium lauryl sulfate (SLS), poloxamer 188, Tween 80) have been prepared by a precipitation method. The nanosuspension particles were characterized for particle size, zeta potential, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), in vitro drug release, and release kinetics. Results: The readily optimized batch nanosuspension particles evaluated and exhibited the particle size (750 nm), zeta potential (-24.33 mV), differential scanning calorimetry (DSC) drug exhibited a change in crystalline form to amorphous, in vitro dissolution (F12 was higher 95% within 5 min) and drug release kinetics. The formulation parameter of surfactant concentration is optimized. Conclusion: The formulation of the nanosuspension approach has been shown to substantial improvement in the dissolution rate, thereby enhancing the oral bioavailability with the future development of this technology.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 328 ◽  
Author(s):  
Zhuang Ding ◽  
Lili Wang ◽  
Yangyang Xing ◽  
Yanna Zhao ◽  
Zhengping Wang ◽  
...  

Celecoxib (CLX), a selective COX-2 inhibitor, is a biopharmaceutics classification system (BCS) class II drug with its bioavailability being limited by thepoor aqueoussolubility. The purpose of this study was to develop and optimize CLX nanocrystalline(CLX-NC) solid dispersion prepared by the wet medium millingtechnique combined with lyophilizationto enhance oral bioavailability. In formulation screening, the resulting CLX-NC usingpolyvinylpyrrolidone (PVP) VA64 and sodiumdodecyl sulfate (SDS) as combined stabilizers showed the minimum particle size and a satisfactory stability. The formulation and preparation processwere further optimized by central composite experimentaldesign with PVP VA64 concentration (X1), SDS concentration (X2) and milling times (X3) as independent factors and particle size (Y1), polydispersity index (PDI, Y2) and zeta potential (Y3) as response variables. The optimal condition was determined as a combination of 0.75% PVP VA64, 0.11% SDS with milling for 90 min.The particle size, PDI and zeta potential of optimized CLX-NC were found to be 152.4 ± 1.4 nm, 0.191 ± 0.012 and −34.4 ± 0.6 mV, respectively. The optimized formulation showed homogeneous rod-like morphology as observed by scanning electron microscopy and was in a crystalline state as determined by differential scanning calorimetry and powder X-ray diffraction. In a storage stability study, optimized CLX-NC exhibited an excellent physical stability during six months’ storage at both the refrigeration and room conditions. In vivo pharmacokinetic research in Sprague-Dawley ratsdisplayed that Cmax and AUC0–∞ of CLX-NC were increased by 2.9 and 3.1 fold, compared with physical mixture. In this study, the screening and optimizing strategy of CLX-NC formulation represents a commercially viable approach forenhancing the oral bioavailability of CLX.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 182 ◽  
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < −30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.


Author(s):  
MONOWAR HUSSAIN ◽  
ANUPAM SARMA ◽  
SHEIKH SOFIUR RAHMAN ◽  
ABDUL MATIN SIDDIQUE ◽  
TANUKU PAVANI EESWARI

Objective: Tuberculosis (TB) is an infectious bacterial disease caused by Mycobacterium tuberculosis which most commonly affects the lungs. TB has the highest mortality rate than any other infectious disease occurs worldwide. The main objective of the present investigation was to develop polymeric nanoparticles based drug delivery system to sustain the ethambutol (ETB) release by reducing the dose frequency. Methods: The Preformulation studies of drug ETB were done by physical characterization, melting point determination, and UV spectrophotometric analysis. The ETB loaded nanoparticles were prepared by double-emulsion (W/O/W) solvent evaporation/diffusion technique. The prepared polymeric nanoparticles were evaluated for particle size, polydispersity index, zeta potential, drug entrapment efficiency, drug loading, drug-polymer compatibility study, surface morphology, in vitro drug release, and release kinetics. Results: Based on the result obtained from the prepared formulations, F11 showed the best result and was selected as the optimized formulation. Optimized batch (F11) showed better entrapment efficiency (73.3%), good drug loading capacity (13.21%), optimum particle size (136.1 nm), and zeta potential (25.2 mV) with % cumulative drug release of 79.08% at the end of 24 h. Conclusion: These results attributed that developed polymeric nanoparticles could be effective in sustaining the ETB release over 24 h. Moreover, the developed nanoparticles could be an alternate method for ETB delivery with a prolonged drug release profile and a better therapeutic effect can be achieved for the treatment of tuberculosis.


2019 ◽  
Vol 9 (3) ◽  
pp. 382-392 ◽  
Author(s):  
Teuku Nanda Saifullah Sulaiman ◽  
Dwi Larasati ◽  
Akhmad Kharis Nugroho ◽  
Syaiful Choiri

Purpose: To assess the effect of the lactic acid (LA)-to-glycolic acid (GA) molar ratio and polyethylene glycol (PEG) concentration on the formation of poly-lactide co-glycolide acid (PLGA)-PEG-PLGA co-block polymers simultaneously using statistical approach. Methods: A 22 full factorial design with the addition of a point in the center of the design, namely curvature, was applied. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) were performed to confirm the formation of the co-block polymer. Simvastatin (SMV), a drug model was incorporated into the nano-polymeric micellar (NpM) of PLGA-PEG-PLGA followed by solubility phase, particle size, zeta potential, and entrapment efficiency characterizations. Results: FTIR, DSC, and NMR successfully confirmed the formation of co-block polymers. Solubility of SMV increased from 2 to 44-folds depending on co-block concentration with entrapment efficiency of 59%-80%. The NpM had size in the range of 206 to 402 nm with negative zeta potential. LA to GA ratio had greater effect on particle size reduction and increasing of co-polymer length. In addition, it had higher contributions on increasing of solubility and entrapment efficiency of SMV than PEG. Conclusion: According to these findings, the LA to GA ratio and PEG concentration gained a great consideration in order to prepare the PLGA-PEG-PLGA co-block which fulfilled the quality target product profile of NpM delivery system.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document