scholarly journals FABRICATION AND IN VITRO CHARACTERIZATION OF A NOVEL NANOSUSPENSION OF TELMISARTAN: A POORLY SOLUBLE DRUG PREPARED BY ANTISOLVENT PRECIPITATION TECHNIQUE USING 33 FACTORIAL DESIGN

Author(s):  
PRASANTA KUMAR MOHAPATRA ◽  
SIREESHA ◽  
VAIBHAV RATHORE ◽  
HARISH CHANDRA VERMA ◽  
BIBHUTI PRASAD RATH ◽  
...  

Objective: The motivation behind the current examination was to build the solvency and dissolution rate of an antihypertensive drug telmisartan by the planning of nanosuspension by precipitation method at the research facility scale. We researched the nanoparticle manufacture of telmisartan employing a 33 factorial experimental configuration considering the impacts of nanosuspension on the physical, morphological, and dissolution properties of telmisartan. Methods: To get ready, nanosuspension particles of an ineffectively dissolvable drug are moreover of a drug solution to the anti-solvent leads to abrupt supersaturation and precipitation the making of nanoparticles. The nanosuspension particles of a poorly soluble drug loaded with urea and surfactants (sodium lauryl sulfate (SLS), poloxamer 188, Tween 80) have been prepared by a precipitation method. The nanosuspension particles were characterized for particle size, zeta potential, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), in vitro drug release, and release kinetics. Results: The readily optimized batch nanosuspension particles evaluated and exhibited the particle size (750 nm), zeta potential (-24.33 mV), differential scanning calorimetry (DSC) drug exhibited a change in crystalline form to amorphous, in vitro dissolution (F12 was higher 95% within 5 min) and drug release kinetics. The formulation parameter of surfactant concentration is optimized. Conclusion: The formulation of the nanosuspension approach has been shown to substantial improvement in the dissolution rate, thereby enhancing the oral bioavailability with the future development of this technology.

Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


Author(s):  
Shyam S Kumar ◽  
G. Gopalakrishnan ◽  
N. L. Gowrishankar

Objective: Drug nanoparticles offer a versatile platform for enhancing the dissolution rate and bioavailability of poorly water soluble drugs The present study was aimed to design and develop dasatinib (DAS) loaded Poly lactide co glycolic acid (PLGA) to enhance the dissolution rate and to study the effect of formulation variables for the BCS class II drug dasatinib for the treatment of chronic myeloid leukemia. Methods: The DAS loaded Nps were prepared by using modified double emulsion solvent evaporation method (DESE) using different stabilizers, the formulated Nps were characterized for particle size, zeta potential, Poly Dispersity Index, Surface morphology, Drug entrapment and Invitro drug release. Results: The DAS loaded NP s showed the lowest particles size of 123 nm and zeta potential of – results of Pluronic F68 loaded NP showed the lowest particle size of – and highest zeta potential of --. Surface morphology of NPs with DMAB showed distinct smooth spherical particles with the size range of 50nm. Morphology of Pluronic F68 formulated NPs showed the high degree of aggregation. In vitro drug release showed up to 24hrs in a sustained manner. Conclusion: The result of our study indicates the use of PLGA as a sustained release polymer and using DMAB as a stabilizer for better stable formulation.


2019 ◽  
Vol 11 (1) ◽  
pp. 191 ◽  
Author(s):  
Yogita Tyagi ◽  
N. V. Satheesh Madhav

Objective: Design and evaluation of fluvoxamine loaded bio-nanosuspensions using biopolymer which was isolated from the wood of Santalum album used as the stabilizer.Methods: The main aim of the present investigation was to obtain an ocular drug delivery system with improved stability using biopolymer. The fluvoxamine loaded Bio-nanosuspension was prepared using novel biopolymer isolated from Santalum album by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4% and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, %entrapment efficacy, in vitro drug release, stability studies.Results: The prepared bio-nanosuspension was subjected to the best formulation based on the comparison of above-mentioned evaluation parameters, so Fb3 (3%) formulation was found to be the best formulation showing an R2 value of 0.9744, T50% of 31.3 h and T80% of 50.1 h respectively. According to the release kinetics, the best fit model was found to be Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Santalum album provided excellent stability for the formulation, and resulting particle size for the best formulation was found to be 196 nm. The bio-nanosuspension had Polydispersity Index (PDI) of 0.19 with zeta potential of-20mV.Conclusion: The prepared bio-nanosuspension was found to be safe and compatible with the ophthalmic delivery for treatment of depression.


Author(s):  
YOGITA TYAGI ◽  
N. V. SATHEESH MADHAV

Objective: Development and evaluation of selegiline-loaded bio-nanosuspensions using biopolymer which was isolated from seeds of Buchanania lanzan (Chironji), used as biostabilizer and compared with standard polymer. Methods: The selegiline-loaded bio-nanosuspensions were prepared using novel biopolymer and standard stabilizer (hydroxypropyl methylcellulose) by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4%, and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, percentage entrapment efficacy, in vitro drug release, and stability studies. Results: The prepared selegiline bio-nanosuspensions were subjected to the best formulation based on comparison of above-mentioned evaluation parameters, so Fb2 (2%) formulation was found to be the best formulation showing an R2=0.9842, T50% of 32 h and T80% of 70 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release, and Fs5 (5%) formulation was found to be the best formulation showing an R2=0.9564, T50% of 25 h and T80% of 60 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release. The biopolymer provided excellent stability for the formulation and resulting particle size for the best formulation was found to be 360 nm. The best formulation was found to be polydispersity index of 0.43 with zeta potential of −5.12 mV. Conclusion: The prepared bio-nanosuspensions using biopolymer were found to be safe and compatible with the novel drug delivery for the treatment of depression in comparison of standard polymer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dolly Tulsibhai Gadhiya ◽  
Jayvadan K. Patel ◽  
Arti Arjanbhai Bagada

Abstract Background Nanocrystals of any drug are pure solid drug particles with a mean diameter in nanometer range. Dissolution is a crucial factor for absorption of medicine in case of water-insoluble or poorly soluble drugs. The aim of this study was to develop nanocrystals of a hydrophobic drug, Lercanidipine, by addition of solvent to an antisolvent with high-speed homogenization to achieve dissolution and solubility enhancement. Addition of organic solvent to antisolvent results in genesis of nanosized particles due to fast nucleation process and rapid mixing. The nanosuspension was formulated using PVP K30 as a stabilizer. Further, nanosuspensions were lyophilized to convert into solid nanocrystals using mannitol as a cryoprotectant. The developed nanosuspensions were characterized for particle size, zeta potential, saturation solubility, and in vitro dissolution studies. Lyophilized solid nanocrystals were characterized for FTIR, SEM, XRD, and zeta potential (ζ). Results Central composite design was executed to study influence of amount of stabilizer and solvent to antisolvent ratio (independent variables) on particle size and % drug release at 10 min (dependent variables). The particle size of the developed Lercanidipine nanosuspensions were observed in the range of 302.00 ± 10.58 to 484.33 ± 6.51 nm measured by Zetatrac. A considerable increase was found in the solubility and dissolution rate of the nanocrystals as compared to pure drug. The drug release from Lercanidipine nanosuspensions was increased up to 88.95% within 10 min as compared to pure Lercanidipine which was only 21.53%. The X-ray diffraction study of lyophilized nanocrystals showed sharp and distinct peaks due to an increse in crystallinity of Lercanidipine Particle morphology was studied by scanning electron microscopy revealed that nanoprecipitated particles with lyophilization in the presence of mannitol exhibited dendrite needle-like crystals. Conclusion The nanocrystal development by antisolvent precipitation procedure using methanol as solvent, water as antisolvent, and low amounts of PVP K30 as stabilizer is a very promising and effective method to increase the dissolution rate of Lercanidipine. Graphical abstract


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 27-35
Author(s):  
A. A Bakliwal ◽  
◽  
D. S. Jat ◽  
S. G. Talele ◽  
A. G. Jadhav

The objective of the present study was to produce extended release nateglinide nanosponges for oral delivery. Preparation of nanosponges leads to solubility enhancement. Nateglinide is a BCS Class II drug, having low solubility. So, to increase the solubility of nateglinide it is formulated into nanosponges. Nanosponges using ethyl cellulose as a polymer and dichloromethane as a cross-linker were prepared successfully by ultra-sound assisted synthesis method. The effects of different drug: placebo ratios on the physical characteristics of the nanosponges as well as the drug content and in vitro drug release of the nanosponges were investigated. Particle size analysis and surface morphology of nanosponges were performed. The scanning and transmission electron microscopy of nanosponges showed that they were spongy in nature. The particle size was found to be in the range 46.37 - 97.23 nm out of which particle size of the optimized formulation was 51.79 nm and the drug content was found to 79.43 %. The optimized nanosponge formulations were selected for preparing nanosponge tablets for extended drug delivery by oral route. These tablets were prepared using xanthan gum and PVP K-30 and were evaluated by pre-compression and post-compression parameters. The nateglinide nanosponges tablet formulation were studied for different parameters using Design Expert Software. All formulations were evaluated for in vitro drug release analyzed according to various release kinetic models and it was found that it follows zero order release kinetics.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Sign in / Sign up

Export Citation Format

Share Document